The biosynthesis and assembly of T cell receptor alpha- and beta-chains with the CD3 complex. 1988

F Koning, and A M Lew, and W L Maloy, and R Valas, and J E Coligan
Biological Resources Branch, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892.

The biosynthesis, processing, and assembly of the TCR alpha- and beta-chains with each other and with the CD3 complex were investigated on both cell surface positive (TCR+CD3-) and negative (TCR-CD3-) cell lines. The results indicate that 1) in cell surface TCR-CD3- cell lines (MOLT 3, CCRF-CEM), TCR-beta, but not alpha-chains are present intracellularly. TCR-beta-CD3 complexes are readily found in these cell lines, but no evidence for final processing or cell surface expression of such incomplete TCR-CD3 complexes is observed. 2) In the cell surface TCR+CD3+ cell line HPB-ALL, both alpha- and beta-chains are present intracellularly. Whereas non-glycosylated forms of TCR-beta chain can be detected, only more mature forms of TCR alpha-chains are detected indicating that the alpha-chains are more rapidly glycosylated than the beta-chains. 3) The large majority of the intracellular alpha- and beta-chains is not disulfide linked and a small fraction of these is associated with CD3. 4) Only small amounts of the total intracellular TCR chains are found as CD3-associated disulfide-linked alpha beta-heterodimers. 5) Final processing of TCR chains for cell surface expression takes place after formation of these TCR-alpha beta-CD3 complexes. Thus, both the TCR alpha- and beta-chains are over-produced and only relatively small amounts of these chains form CD3-associated heterodimers that are processed for cell surface expression. Analogous results were obtained with a non-leukemic CTL clone. Based on these observations, a model for the biosynthesis and assembly of the TCR-CD3 complex is presented.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004220 Disulfides Chemical groups containing the covalent disulfide bonds -S-S-. The sulfur atoms can be bound to inorganic or organic moieties. Disulfide
D006031 Glycosylation The synthetic chemistry reaction or enzymatic reaction of adding carbohydrate or glycosyl groups. GLYCOSYLTRANSFERASES carry out the enzymatic glycosylation reactions. The spontaneous, non-enzymatic attachment of reducing sugars to free amino groups in proteins, lipids, or nucleic acids is called GLYCATION (see MAILLARD REACTION). Protein Glycosylation,Glycosylation, Protein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000945 Antigens, Differentiation, T-Lymphocyte Antigens expressed on the cell membrane of T-lymphocytes during differentiation, activation, and normal and neoplastic transformation. Their phenotypic characterization is important in differential diagnosis and studies of thymic ontogeny and T-cell function. Antigens, Differentiation, T-Cell,Differentiation Antigens, T-Cell,L3T4 Antigens,Leu Antigens, T-Lymphocyte,T-Cell Differentiation Antigens,T-Lymphocyte Differentiation Antigens,T6 Antigens,Antigens, Differentiation, T Lymphocyte,Differentiation Antigens, T Lymphocyte,Antigens, L3T4,Antigens, T-Cell Differentiation,Antigens, T-Lymphocyte Differentiation,Antigens, T-Lymphocyte Leu,Antigens, T6,Differentiation Antigens, T Cell,Differentiation Antigens, T-Lymphocyte,Leu Antigens, T Lymphocyte,T Cell Differentiation Antigens,T Lymphocyte Differentiation Antigens,T-Lymphocyte Leu Antigens

Related Publications

F Koning, and A M Lew, and W L Maloy, and R Valas, and J E Coligan
December 2001, European journal of immunology,
F Koning, and A M Lew, and W L Maloy, and R Valas, and J E Coligan
January 1994, European journal of immunology,
F Koning, and A M Lew, and W L Maloy, and R Valas, and J E Coligan
August 1994, The Journal of experimental medicine,
F Koning, and A M Lew, and W L Maloy, and R Valas, and J E Coligan
May 1991, The Journal of experimental medicine,
F Koning, and A M Lew, and W L Maloy, and R Valas, and J E Coligan
October 1991, The Journal of experimental medicine,
F Koning, and A M Lew, and W L Maloy, and R Valas, and J E Coligan
September 1990, Journal of immunology (Baltimore, Md. : 1950),
F Koning, and A M Lew, and W L Maloy, and R Valas, and J E Coligan
December 1989, Journal of immunology (Baltimore, Md. : 1950),
F Koning, and A M Lew, and W L Maloy, and R Valas, and J E Coligan
March 1994, The Journal of biological chemistry,
F Koning, and A M Lew, and W L Maloy, and R Valas, and J E Coligan
August 1987, The Journal of experimental medicine,
Copied contents to your clipboard!