The T cell antigen receptor alpha and beta chains interact via distinct regions with CD3 chains. 1994

N Manolios, and O Kemp, and Z G Li
Rheumatology Department, Royal North Shore Hospital, St. Leonards, Sydney, NSW, Australia.

Selective pairwise interactions between CD3 chains and the clonotypic T cell antigen receptor (TCR)-alpha, -beta chains has recently been established. In this study, the region of interaction between clonotypic and CD3 chains involved with assembly was examined. To determine the site of protein interaction a variety of genetically altered TCR chains were constructed. These included: truncated proteins, lacking transmembrane and or cytosolic domains; chimeric proteins, in which extracellular, transmembrane or cytosolic domains were replaced with similar domains derived from either the Tac antigen or CD4; and point mutagenized TCR chains. COS-1 cells were transfected with cDNA, metabolically labeled, and immunoprecipitates analyzed using non-equilibrium pH gel electrophoresis (NEPHGE)-SDS/PAGE. The results demonstrated that assembly between TCR-alpha and TCR-beta chains occurred at the extracellular level. Assembly of the TCR-alpha chain with CD3-delta, and CD3-epsilon was localized to an eight-amino acid motif within the transmembrane domain of TCR-alpha. Site-specific mutations of the TCR-alpha charged residues within this motif (arginine, lysine) to leucine and similar point mutations of the transmembrane CD3-epsilon and CD3-delta charge groups resulted in the abrogation of assembly. In contrast, TCR-beta and CD3-epsilon binary complexes interacted via their extracellular domain. Analogous to TCR-alpha, the site of TCR-beta and CD3-delta assembly was at the transmembrane region. Despite multiple genetic manipulations on CD3-gamma and zeta these proteins failed to assemble with TCR-alpha. Similarly, there was no interaction between TCR-beta and zeta. These findings when coupled with the information on pairwise interactions and formation of higher order subcomplexes extend our model for the structure of the TCR complex.

UI MeSH Term Description Entries
D011233 Precipitin Tests Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate. Precipitin Test,Test, Precipitin,Tests, Precipitin
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D004274 DNA, Recombinant Biologically active DNA which has been formed by the in vitro joining of segments of DNA from different sources. It includes the recombination joint or edge of a heteroduplex region where two recombining DNA molecules are connected. Genes, Spliced,Recombinant DNA,Spliced Gene,Recombinant DNA Research,Recombination Joint,DNA Research, Recombinant,Gene, Spliced,Joint, Recombination,Research, Recombinant DNA,Spliced Genes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D015180 Electrophoresis, Gel, Two-Dimensional Electrophoresis in which a second perpendicular electrophoretic transport is performed on the separate components resulting from the first electrophoresis. This technique is usually performed on polyacrylamide gels. Gel Electrophoresis, Two-Dimensional,Polyacrylamide Gel Electrophoresis, Two-Dimensional,2-D Gel Electrophoresis,2-D Polyacrylamide Gel Electrophoresis,2D Gel Electrophoresis,2D PAGE,2D Polyacrylamide Gel Electrophoresis,Electrophoresis, Gel, 2-D,Electrophoresis, Gel, 2D,Electrophoresis, Gel, Two Dimensional,Polyacrylamide Gel Electrophoresis, 2-D,Polyacrylamide Gel Electrophoresis, 2D,Two Dimensional Gel Electrophoresis,2 D Gel Electrophoresis,2 D Polyacrylamide Gel Electrophoresis,Electrophoresis, 2-D Gel,Electrophoresis, 2D Gel,Electrophoresis, Two-Dimensional Gel,Gel Electrophoresis, 2-D,Gel Electrophoresis, 2D,Gel Electrophoresis, Two Dimensional,PAGE, 2D,Polyacrylamide Gel Electrophoresis, 2 D,Polyacrylamide Gel Electrophoresis, Two Dimensional,Two-Dimensional Gel Electrophoresis
D016693 Receptors, Antigen, T-Cell, alpha-beta T-cell receptors composed of CD3-associated alpha and beta polypeptide chains and expressed primarily in CD4+ or CD8+ T-cells. Unlike immunoglobulins, the alpha-beta T-cell receptors recognize antigens only when presented in association with major histocompatibility (MHC) molecules. Antigen Receptors, T-Cell, alpha-beta,T-Cell Receptors alpha-Chain,T-Cell Receptors beta-Chain,T-Cell Receptors, alpha-beta,TcR alpha-beta,Antigen T Cell Receptor, alpha Chain,Antigen T Cell Receptor, beta Chain,Receptors, Antigen, T Cell, alpha beta,T Cell Receptors, alpha beta,T-Cell Receptor alpha-Chain,T-Cell Receptor beta-Chain,T-Cell Receptor, alpha-beta,T Cell Receptor alpha Chain,T Cell Receptor beta Chain,T Cell Receptor, alpha beta,T Cell Receptors alpha Chain,T Cell Receptors beta Chain,TcR alpha beta,alpha-Chain, T-Cell Receptor,alpha-Chain, T-Cell Receptors,alpha-beta T-Cell Receptor,alpha-beta T-Cell Receptors,alpha-beta, TcR,beta-Chain, T-Cell Receptor,beta-Chain, T-Cell Receptors
D017252 CD3 Complex Complex of at least five membrane-bound polypeptides in mature T-lymphocytes that are non-covalently associated with one another and with the T-cell receptor (RECEPTORS, ANTIGEN, T-CELL). The CD3 complex includes the gamma, delta, epsilon, zeta, and eta chains (subunits). When antigen binds to the T-cell receptor, the CD3 complex transduces the activating signals to the cytoplasm of the T-cell. The CD3 gamma and delta chains (subunits) are separate from and not related to the gamma/delta chains of the T-cell receptor (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA). Antigens, CD3,CD3 Antigens,T3 Antigens,CD3 Antigen,T3 Antigen,T3 Complex,Antigen, CD3,Antigen, T3,Antigens, T3
D017260 Receptor-CD3 Complex, Antigen, T-Cell Molecule composed of the non-covalent association of the T-cell antigen receptor (RECEPTORS, ANTIGEN, T-CELL) with the CD3 complex (CD3 COMPLEX). This association is required for the surface expression and function of both components. The molecule consists of up to seven chains: either the alpha/beta or gamma/delta chains of the T-cell receptor, and four or five chains in the CD3 complex. T-Cell Antigen Receptor-CD3 Complex,TCR-CD3 Complex,Complex, TCR-CD3,T Cell Antigen Receptor CD3 Complex,TCR CD3 Complex

Related Publications

N Manolios, and O Kemp, and Z G Li
May 1991, The Journal of experimental medicine,
N Manolios, and O Kemp, and Z G Li
October 1991, The Journal of experimental medicine,
N Manolios, and O Kemp, and Z G Li
May 1988, Journal of immunology (Baltimore, Md. : 1950),
N Manolios, and O Kemp, and Z G Li
February 1992, European journal of immunology,
N Manolios, and O Kemp, and Z G Li
January 1986, Journal of cellular physiology. Supplement,
N Manolios, and O Kemp, and Z G Li
December 1986, AIDS research,
N Manolios, and O Kemp, and Z G Li
March 1987, The Journal of infectious diseases,
N Manolios, and O Kemp, and Z G Li
August 1987, The Journal of experimental medicine,
Copied contents to your clipboard!