Direct cardiac effects of vasopressin: role of V1- and V2-vasopressinergic receptors. 1988

B R Walker, and M E Childs, and E M Adams
Department of Physiology, University of New Mexico School of Medicine, Albuquerque 87131.

Experiments were performed to determine the possible direct effects of arginine vasopressin (AVP) on cardiac function in the nonworking Langendorff preparation. Hearts were isolated from male Wistar rats, and the coronary arteries were retrograde perfused at a constant rate through the aorta with a Krebs-Henseleit solution, which was continuously bubbled with 95% O2-5% CO2. The hearts were paced at 280 beats/min and measurements made of peak ventricular pressure (PVP), first derivative of left ventricular pressure (dP/dtmax), and coronary perfusion pressure (CPP). By maintaining constant coronary flow, the direct cardiac effects of AVP could be determined independent of changes in myocardial O2 delivery elicited by potential coronary vasoconstriction. Myocardial function was assessed at AVP concentrations of 0, 10, 25, 50, 100, 200, 400, and 500 pg/ml. Progressive coronary vasoconstriction was observed with increasing AVP concentration. In contrast, PVP and dP/dtmax increased at 50 and 100 pg/ml of AVP but fell at 400 and 500 pg/ml. The maximal PVP and dP/dtmax responses were at 50 pg/ml (+16 +/- 3 and +44 +/- 4%, respectively), whereas at 500 pg/ml both PVP and dP/dtmax were reduced below control (-30 +/- 4 and -34 +/- 5%, respectively). Pretreatment with the specific V1-vasopressinergic antagonist d(CH2)5Tyr(Me)AVP (40 ng/ml) totally blocked both the coronary vasoconstrictor and contractility responses to AVP. Furthermore, infusion of a specific V2-agonist was without effect even at high doses. These data suggest that although AVP causes dose-related coronary vasoconstriction over a wide range of AVP concentrations, the hormone may exert a positive inotropic effect at doses mimicking circulating levels encountered in a number of pathophysiological situations.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D011945 Receptors, Angiotensin Cell surface proteins that bind ANGIOTENSINS and trigger intracellular changes influencing the behavior of cells. Angiotensin Receptor,Angiotensin Receptors,Angiotensin II Receptor,Angiotensin III Receptor,Receptor, Angiotensin II,Receptor, Angiotensin III,Receptor, Angiotensin
D003331 Coronary Vessels The veins and arteries of the HEART. Coronary Arteries,Sinus Node Artery,Coronary Veins,Arteries, Coronary,Arteries, Sinus Node,Artery, Coronary,Artery, Sinus Node,Coronary Artery,Coronary Vein,Coronary Vessel,Sinus Node Arteries,Vein, Coronary,Veins, Coronary,Vessel, Coronary,Vessels, Coronary
D003894 Deamino Arginine Vasopressin A synthetic analog of the pituitary hormone, ARGININE VASOPRESSIN. Its action is mediated by the VASOPRESSIN receptor V2. It has prolonged antidiuretic activity, but little pressor effects. It also modulates levels of circulating FACTOR VIII and VON WILLEBRAND FACTOR. Desmopressin,Vasopressin, Deamino Arginine,1-Deamino-8-D-arginine Vasopressin,1-Desamino-8-arginine Vasopressin,Adiuretin,Adiuretin SD,Apo-Desmopressin,DDAVP,Desmogalen,Desmopressin Acetate,Desmopressin Monoacetate,Desmopressin Monoacetate, Trihydrate,Desmopressine Ferring,Desmospray,Desmotabs,Minirin,Minurin,Nocutil,Octim,Octostim,Acetate, Desmopressin,Arginine Vasopressin, Deamino,Ferring, Desmopressine,Monoacetate, Desmopressin,Monoacetate, Trihydrate Desmopressin,Trihydrate Desmopressin Monoacetate,Vasopressin, 1-Deamino-8-D-arginine,Vasopressin, 1-Desamino-8-arginine
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001127 Arginine Vasopressin The predominant form of mammalian antidiuretic hormone. It is a nonapeptide containing an ARGININE at residue 8 and two disulfide-linked cysteines at residues of 1 and 6. Arg-vasopressin is used to treat DIABETES INSIPIDUS or to improve vasomotor tone and BLOOD PRESSURE. Argipressin,Vasopressin, Arginine,Arg-Vasopressin,Argipressin Tannate,Arg Vasopressin
D014661 Vasoconstriction The physiological narrowing of BLOOD VESSELS by contraction of the VASCULAR SMOOTH MUSCLE. Vasoconstrictions
D014667 Vasopressins Antidiuretic hormones released by the NEUROHYPOPHYSIS of all vertebrates (structure varies with species) to regulate water balance and OSMOLARITY. In general, vasopressin is a nonapeptide consisting of a six-amino-acid ring with a cysteine 1 to cysteine 6 disulfide bridge or an octapeptide containing a CYSTINE. All mammals have arginine vasopressin except the pig with a lysine at position 8. Vasopressin, a vasoconstrictor, acts on the KIDNEY COLLECTING DUCTS to increase water reabsorption, increase blood volume and blood pressure. Antidiuretic Hormone,Antidiuretic Hormones,beta-Hypophamine,Pitressin,Vasopressin,Vasopressin (USP),Hormone, Antidiuretic,beta Hypophamine

Related Publications

B R Walker, and M E Childs, and E M Adams
February 1994, The American journal of physiology,
B R Walker, and M E Childs, and E M Adams
January 1998, European journal of pharmacology,
B R Walker, and M E Childs, and E M Adams
July 1995, The American journal of physiology,
B R Walker, and M E Childs, and E M Adams
August 2005, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
B R Walker, and M E Childs, and E M Adams
October 1994, European journal of endocrinology,
B R Walker, and M E Childs, and E M Adams
February 1993, The Journal of endocrinology,
B R Walker, and M E Childs, and E M Adams
June 1986, Archives des maladies du coeur et des vaisseaux,
B R Walker, and M E Childs, and E M Adams
January 2018, Journal of experimental pharmacology,
B R Walker, and M E Childs, and E M Adams
June 1996, Kidney international. Supplement,
Copied contents to your clipboard!