Effects of alterations in cellular iron on biosynthesis of the transferrin receptor in K562 cells. 1985

K K Rao, and D Shapiro, and E Mattia, and K Bridges, and R Klausner

Treatment of K562 cells, a human erythroleukemia cell line, with desferrioxamine raised the levels of the receptor for transferrin (Tf) two- to threefold over that of the control cells. The levels of receptor were reduced by at least 50 and 35% of that of the control in cells treated with diferric Tf and ferric ammonium citrate, respectively. These changes were of total cellular receptors with no alteration in the proportion of receptors found on the cell surface. The half-lives of the receptor were identical in cells treated with desferrioxamine, diferric Tf, or ferric ammonium citrate. Cells metabolically labeled with [35S]methionine showed a 2.5-fold increase in the rate of receptor synthesis when treated with desferrioxamine and a 35 and 65% decrease when treated with ferric ammonium citrate and diferric Tf, respectively. In vitro translations of polyadenylated mRNA isolated from cells incubated with desferrioxamine showed a 2.5-fold increase in translatable mRNA for the receptor, whereas treatment of cells with ferric ammonium citrate and diferric Tf resulted in a 25 and 50% reduction, respectively, in translatable mRNA for this receptor.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D011990 Receptors, Transferrin Membrane glycoproteins found in high concentrations on iron-utilizing cells. They specifically bind iron-bearing transferrin, are endocytosed with its ligand and then returned to the cell surface where transferrin without its iron is released. Transferrin Receptors,Transferrin Receptor,Receptor, Transferrin
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003676 Deferoxamine Natural product isolated from Streptomyces pilosus. It forms iron complexes and is used as a chelating agent, particularly in the mesylate form. Desferrioxamine,Deferoxamine B,Deferoxamine Mesilate,Deferoxamine Mesylate,Deferoxamine Methanesulfonate,Deferoximine,Deferrioxamine B,Desferal,Desferioximine,Desferrioxamine B,Desferrioxamine B Mesylate,Desferroxamine,Mesilate, Deferoxamine,Mesylate, Deferoxamine,Mesylate, Desferrioxamine B,Methanesulfonate, Deferoxamine
D004915 Leukemia, Erythroblastic, Acute A myeloproliferative disorder characterized by neoplastic proliferation of erythroblastic and myeloblastic elements with atypical erythroblasts and myeloblasts in the peripheral blood. Di Guglielmo's Disease,Erythremic Myelosis,Erythroblastic Leukemia, Acute,Erythroleukemia,Leukemia, Myeloid, Acute, M6,Myeloid Leukemia, Acute, M6,Di Guglielmo Disease,Acute Erythroblastic Leukemia,Acute Erythroblastic Leukemias,Di Guglielmos Disease,Disease, Di Guglielmo,Disease, Di Guglielmo's,Erythremic Myeloses,Erythroblastic Leukemias, Acute,Erythroleukemias,Leukemia, Acute Erythroblastic,Leukemias, Acute Erythroblastic,Myeloses, Erythremic,Myelosis, Erythremic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

K K Rao, and D Shapiro, and E Mattia, and K Bridges, and R Klausner
November 1984, The Journal of biological chemistry,
K K Rao, and D Shapiro, and E Mattia, and K Bridges, and R Klausner
December 1990, The Biochemical journal,
K K Rao, and D Shapiro, and E Mattia, and K Bridges, and R Klausner
January 1984, Progress in clinical and biological research,
K K Rao, and D Shapiro, and E Mattia, and K Bridges, and R Klausner
April 1983, The Journal of biological chemistry,
K K Rao, and D Shapiro, and E Mattia, and K Bridges, and R Klausner
October 2017, Metallomics : integrated biometal science,
K K Rao, and D Shapiro, and E Mattia, and K Bridges, and R Klausner
January 2006, Blood cells, molecules & diseases,
K K Rao, and D Shapiro, and E Mattia, and K Bridges, and R Klausner
January 1993, Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine,
K K Rao, and D Shapiro, and E Mattia, and K Bridges, and R Klausner
April 1993, European journal of biochemistry,
K K Rao, and D Shapiro, and E Mattia, and K Bridges, and R Klausner
June 1994, Molecular and cellular biochemistry,
Copied contents to your clipboard!