Effect of carbon dioxide on the activity of slowly and rapidly adapting pulmonary stretch receptors in cats. 1985

K Ravi

Single fiber activity from slowly and rapidly adapting pulmonary stretch receptors (PSR) was recorded from the left cervical vagus of anesthetized, open-chested and artificially ventilated cats. Reducing the end-tidal CO2 to low values did not affect the frequency of occurrence of higher threshold (HT) PSR. Occlusion of the left pulmonary artery (LPA) had no significant effect on the resting discharge of both HT and low threshold (LT) PSR. Cyclic ventilation with 8% CO2 in O2 reduced the activity of LT and HT receptors by similar amounts, irrespective of their anatomical location. After LPA occlusion, CO2 ventilation reduced markedly the activity of both type of PSR but to the greatest extent that of the HT receptors, the majority of which were located in the intrapulmonary airways. The CO2 depressant effect may not be due solely to changes in H+ concentration at the receptor level, since acetazolamide did not totally abolish the effect even though it significantly reduced it. Sustained inflation with 8% CO2 in O2 significantly reduced the activity of HT receptors in both the dynamic and static phases of inflation, but had no effect on the activity of LT receptors. Direct localization showed that the receptors which were more accessible to CO2 (all HT and one LT) were located in the lung parenchyma. In the case of rapidly adapting receptors, sustained inflations with CO2 gave inconsistent results. The results show clearly that, as in other mammalian species, the PSR activity in cats is also reduced by hypercapnia. The present study stresses the importance of localizing the PSR and making the observations separately on the two types of PSR, for there may be qualitative and quantitative differences.

UI MeSH Term Description Entries
D008465 Mechanoreceptors Cells specialized to transduce mechanical stimuli and relay that information centrally in the nervous system. Mechanoreceptor cells include the INNER EAR hair cells, which mediate hearing and balance, and the various somatosensory receptors, often with non-neural accessory structures. Golgi Tendon Organ,Golgi Tendon Organs,Krause's End Bulb,Krause's End Bulbs,Mechanoreceptor,Mechanoreceptor Cell,Meissner's Corpuscle,Neurotendinous Spindle,Neurotendinous Spindles,Receptors, Stretch,Ruffini's Corpuscle,Ruffini's Corpuscles,Stretch Receptor,Stretch Receptors,Mechanoreceptor Cells,Bulb, Krause's End,Bulbs, Krause's End,Cell, Mechanoreceptor,Cells, Mechanoreceptor,Corpuscle, Meissner's,Corpuscle, Ruffini's,Corpuscles, Ruffini's,End Bulb, Krause's,End Bulbs, Krause's,Krause End Bulb,Krause End Bulbs,Krauses End Bulb,Krauses End Bulbs,Meissner Corpuscle,Meissners Corpuscle,Organ, Golgi Tendon,Organs, Golgi Tendon,Receptor, Stretch,Ruffini Corpuscle,Ruffini Corpuscles,Ruffinis Corpuscle,Ruffinis Corpuscles,Spindle, Neurotendinous,Spindles, Neurotendinous,Tendon Organ, Golgi,Tendon Organs, Golgi
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D011652 Pulmonary Circulation The circulation of the BLOOD through the LUNGS. Pulmonary Blood Flow,Respiratory Circulation,Circulation, Pulmonary,Circulation, Respiratory,Blood Flow, Pulmonary,Flow, Pulmonary Blood,Pulmonary Blood Flows
D011661 Pulmonary Stretch Receptors Stretch receptors found in the bronchi and bronchioles. Pulmonary stretch receptors are sensors for a reflex which stops inspiration. In humans, the reflex is protective and is probably not activated during normal respiration. Receptors, Pulmonary Stretch,Receptors, Stretch, Pulmonary,Stretch Receptors, Pulmonary,Lung Stretch Receptors,Receptors, Stretch, Lung,Stretch Receptors, Lung,Lung Stretch Receptor,Pulmonary Stretch Receptor,Receptor, Lung Stretch,Receptor, Pulmonary Stretch,Receptors, Lung Stretch,Stretch Receptor, Lung,Stretch Receptor, Pulmonary
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D000086 Acetazolamide One of the CARBONIC ANHYDRASE INHIBITORS that is sometimes effective against absence seizures. It is sometimes useful also as an adjunct in the treatment of tonic-clonic, myoclonic, and atonic seizures, particularly in women whose seizures occur or are exacerbated at specific times in the menstrual cycle. However, its usefulness is transient often because of rapid development of tolerance. Its antiepileptic effect may be due to its inhibitory effect on brain carbonic anhydrase, which leads to an increased transneuronal chloride gradient, increased chloride current, and increased inhibition. (From Smith and Reynard, Textbook of Pharmacology, 1991, p337) Acetadiazol,Acetazolam,Acetazolamide Sodium, (Sterile),Acetazolamide, Monosodium Salt,Ak-Zol,Apo-Acetazolamide,Diacarb,Diamox,Diuramide,Défiltran,Edemox,Glauconox,Glaupax,Huma-Zolamide,Ak Zol,AkZol,Apo Acetazolamide,ApoAcetazolamide,Huma Zolamide,HumaZolamide
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012684 Sensory Thresholds The minimum amount of stimulus energy necessary to elicit a sensory response. Sensory Threshold,Threshold, Sensory,Thresholds, Sensory
D014630 Vagus Nerve The 10th cranial nerve. The vagus is a mixed nerve which contains somatic afferents (from skin in back of the ear and the external auditory meatus), visceral afferents (from the pharynx, larynx, thorax, and abdomen), parasympathetic efferents (to the thorax and abdomen), and efferents to striated muscle (of the larynx and pharynx). Cranial Nerve X,Pneumogastric Nerve,Tenth Cranial Nerve,Nerve X,Nervus Vagus,Cranial Nerve, Tenth,Cranial Nerves, Tenth,Nerve X, Cranial,Nerve Xs,Nerve, Pneumogastric,Nerve, Tenth Cranial,Nerve, Vagus,Nerves, Pneumogastric,Nerves, Tenth Cranial,Nerves, Vagus,Pneumogastric Nerves,Tenth Cranial Nerves,Vagus Nerves,Vagus, Nervus

Related Publications

K Ravi
June 1986, Journal of applied physiology (Bethesda, Md. : 1985),
K Ravi
December 2005, Sheng li xue bao : [Acta physiologica Sinica],
K Ravi
January 2003, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology,
K Ravi
July 2003, Journal of applied physiology (Bethesda, Md. : 1985),
K Ravi
January 1994, Journal of applied physiology (Bethesda, Md. : 1985),
K Ravi
August 1988, The European respiratory journal,
K Ravi
November 2004, Respiratory physiology & neurobiology,
Copied contents to your clipboard!