Differential ability of a T-antigen transport-defective mutant of simian virus 40 to transform primary and established rodent cells. 1985

R E Lanford, and C Wong, and J S Butel

The transforming potential and oncogenicity of a simian virus 40 (SV40) mutant affecting T-antigen (T-ag), SV40(cT)-3, was examined in an effort to dissect T-ag functions in transformation. SV40(cT)-3 has a point mutation at nucleotide 4434 that abolishes the transport of T-ag to the nucleus but does not affect its association with the cell surface. Transfection-transformation assays were performed with primary cells and established cell lines of mouse and rat origin. The efficiency of transformation for established cell lines by SV40(cT)-3 was comparable to that of wild-type SV40, indicating that transformation of established cell lines can occur in the absence of detectable amounts of nuclear T-ag. Transformation of primary mouse embryo fibroblasts by SV40(cT)-3 was markedly influenced by culture conditions; the relative transforming frequency was dramatically reduced in assays involving focus formation in low serum concentrations or anchorage-independent growth. Immunofluorescence tests revealed that the transformed mouse embryo fibroblasts partially transport the mutant cT-ag to the cell nucleus. Transformed cell lines induced by SV40(cT)-3 did not differ in growth properties from wild-type transformants. SV40(cT)-3 was completely defective for the transformation of primary baby rat kidney cells, a primary cell type unable to transport the mutant T-ag to the nucleus. The intracellular localization of cellular protein p53 was found to mimic T-ag distribution in all the transformants analyzed. The mutant virus was weakly oncogenic in vivo: the induction of tumors in newborn hamsters by SV40(cT)-3 was reduced in incidence and delayed in appearance in comparison to wild-type SV40. These observations suggest that cellular transformation is regulated by both nuclear and surface-associated forms of SV40 T-ag.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009374 Neoplasms, Experimental Experimentally induced new abnormal growth of TISSUES in animals to provide models for studying human neoplasms. Experimental Neoplasms,Experimental Neoplasm,Neoplasm, Experimental
D002451 Cell Compartmentation A partitioning within cells due to the selectively permeable membranes which enclose each of the separate parts, e.g., mitochondria, lysosomes, etc. Cell Compartmentations,Compartmentation, Cell,Compartmentations, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002472 Cell Transformation, Viral An inheritable change in cells manifested by changes in cell division and growth and alterations in cell surface properties. It is induced by infection with a transforming virus. Transformation, Viral Cell,Viral Cell Transformation,Cell Transformations, Viral,Transformations, Viral Cell,Viral Cell Transformations
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein

Related Publications

R E Lanford, and C Wong, and J S Butel
June 1985, Molecular and cellular biology,
R E Lanford, and C Wong, and J S Butel
February 1987, Journal of virology,
R E Lanford, and C Wong, and J S Butel
March 1982, Journal of virology,
R E Lanford, and C Wong, and J S Butel
January 1968, Virology,
R E Lanford, and C Wong, and J S Butel
November 1977, Journal of virology,
R E Lanford, and C Wong, and J S Butel
June 1975, Journal of virology,
R E Lanford, and C Wong, and J S Butel
September 1974, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!