Induction of cellular DNA synthesis by a simian virus 40 mutant defective in nuclear transport of T antigen. 1985

R E Lanford, and J K Hyland, and R Baserga, and J S Butel

The simian virus 40 (SV40) (cT)-3 mutant [SV40(cT)-3], which is defective in nuclear transport of T antigen, was utilized to determine whether cellular DNA synthesis can be stimulated by SV40 in the absence of detectable nuclear T antigen. Cellular DNA synthesis was examined in the temperature-sensitive cell cycle mutants, BHK ts13 and BHK tsAF8, after microinjection of quiescent cells with plasmid DNA containing cloned copies of wild-type SV40 or SV40(cT)-3. The efficiency of induction of cellular DNA synthesis was identical for both wild-type SV40 and SV40(cT)-3 in both cell lines. The results suggest that cell surface-associated T antigen, either alone or possibly in combination with minimal amounts of nuclear T antigen below our limit of detection, is able to stimulate cellular DNA synthesis.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008647 Mesocricetus A genus in the order Rodentia and family Cricetidae. One species, Mesocricetus auratus or golden hamster is widely used in biomedical research. Hamsters, Golden,Hamsters, Golden Syrian,Hamsters, Syrian,Mesocricetus auratus,Syrian Golden Hamster,Syrian Hamster,Golden Hamster,Golden Hamster, Syrian,Golden Hamsters,Golden Syrian Hamsters,Hamster, Golden,Hamster, Syrian,Hamster, Syrian Golden,Syrian Hamsters
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000952 Antigens, Polyomavirus Transforming Polyomavirus antigens which cause infection and cellular transformation. The large T antigen is necessary for the initiation of viral DNA synthesis, repression of transcription of the early region and is responsible in conjunction with the middle T antigen for the transformation of primary cells. Small T antigen is necessary for the completion of the productive infection cycle. Polyomavirus Large T Antigens,Polyomavirus Middle T Antigens,Polyomavirus Small T Antigens,Polyomavirus T Proteins,Polyomavirus Transforming Antigens,Polyomavirus Tumor Antigens,SV40 T Antigens,SV40 T Proteins,Simian Sarcoma Virus Proteins,Polyomaviruses Large T Proteins,Polyomaviruses Middle T Proteins,Polyomaviruses Small T Proteins,Antigens, Polyomavirus Tumor,Antigens, SV40 T,Proteins, Polyomavirus T,Proteins, SV40 T,T Antigens, SV40,T Proteins, Polyomavirus,T Proteins, SV40,Transforming Antigens, Polyomavirus,Tumor Antigens, Polyomavirus

Related Publications

R E Lanford, and J K Hyland, and R Baserga, and J S Butel
February 1990, Journal of virology,
R E Lanford, and J K Hyland, and R Baserga, and J S Butel
April 1979, Journal of virology,
R E Lanford, and J K Hyland, and R Baserga, and J S Butel
August 1967, Journal of virology,
R E Lanford, and J K Hyland, and R Baserga, and J S Butel
November 1983, Molecular and cellular biology,
R E Lanford, and J K Hyland, and R Baserga, and J S Butel
May 1985, Molecular and cellular biology,
R E Lanford, and J K Hyland, and R Baserga, and J S Butel
February 1987, Journal of virology,
R E Lanford, and J K Hyland, and R Baserga, and J S Butel
January 1986, Virology,
R E Lanford, and J K Hyland, and R Baserga, and J S Butel
February 1996, Cytometry,
Copied contents to your clipboard!