Autoradiographic quantitation of beta-adrenergic receptors on neural cells in primary cultures. II. Comparison of receptors on various types of immunocytochemically identified cells. 1985

S K Burgess, and P A Trimmer, and K D McCarthy

We have developed a microcomputer-based video method to quantify neurotransmitter receptors on single, immunocytochemically labeled cultured cells. This method has been applied to determine whether beta-adrenergic receptors are more numerous on neurons, astroglia, oligodendroglia or fibroblasts in primary neural cell cultures, and to assess the heterogeneity of receptor expression within a single cell type. Dissociated cells from perinatal rat cerebral cortex were grown in very sparse cultures on polylysine-coated glass slides. The cultured cells were fixed and permeated, then stained with fluorescently labeled immunocytochemical markers for astroglia (glial fibrillary acidic protein), fibroblasts (fibronectin), oligodendroglia (galactocerebroside) or neurons (A2B5). beta-Adrenergic receptors were labeled with [125I]pindolol or [125I]cyanopindolol, and dry-mount autoradiography was carried out on the fixed cells. Cells were identified according to their morphology and cell-type specific staining, then autoradiographic grains associated with the defined cells were visualized by reflected polarized light microscopy and counted with a microcomputer-based video digitizing system. Using this technique, we have determined that fibroblasts have less than 15% of the number of beta-adrenergic receptors expressed by polygonal astroglia, whereas oligodendroglia and neurons had no detectable binding of 125I-labelled ligands. This suggests that in these mixed neural cell cultures, the great majority of beta-adrenergic receptors are associated with astroglia. Furthermore, we determined that process-bearing astroglia have less than 5% of the number of beta-adrenergic receptors expressed by polygonal astroglia. Since process-bearing astroglia are thought to be derived from polygonal astroglia, these results suggest that the beta-adrenergic receptor is lost from this population of astroglia during development.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009836 Oligodendroglia A class of large neuroglial (macroglial) cells in the central nervous system. Oligodendroglia may be called interfascicular, perivascular, or perineuronal (not the same as SATELLITE CELLS, PERINEURONAL of GANGLIA) according to their location. They form the insulating MYELIN SHEATH of axons in the central nervous system. Interfascicular Oligodendroglia,Oligodendrocytes,Perineuronal Oligodendroglia,Perineuronal Satellite Oligodendroglia Cells,Perivascular Oligodendroglia,Satellite Cells, Perineuronal, Oligodendroglia,Perineuronal Satellite Oligodendrocytes,Interfascicular Oligodendroglias,Oligodendrocyte,Oligodendrocyte, Perineuronal Satellite,Oligodendrocytes, Perineuronal Satellite,Oligodendroglia, Interfascicular,Oligodendroglia, Perineuronal,Oligodendroglia, Perivascular,Perineuronal Satellite Oligodendrocyte,Satellite Oligodendrocyte, Perineuronal,Satellite Oligodendrocytes, Perineuronal
D011943 Receptors, Adrenergic, beta One of two major pharmacologically defined classes of adrenergic receptors. The beta adrenergic receptors play an important role in regulating CARDIAC MUSCLE contraction, SMOOTH MUSCLE relaxation, and GLYCOGENOLYSIS. Adrenergic beta-Receptor,Adrenergic beta-Receptors,Receptors, beta-Adrenergic,beta Adrenergic Receptor,beta-Adrenergic Receptor,beta-Adrenergic Receptors,Receptor, Adrenergic, beta,Adrenergic Receptor, beta,Adrenergic beta Receptor,Adrenergic beta Receptors,Receptor, beta Adrenergic,Receptor, beta-Adrenergic,Receptors, beta Adrenergic,beta Adrenergic Receptors,beta-Receptor, Adrenergic,beta-Receptors, Adrenergic
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D001253 Astrocytes A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury. Astroglia,Astroglia Cells,Astroglial Cells,Astrocyte,Astroglia Cell,Astroglial Cell,Astroglias,Cell, Astroglia,Cell, Astroglial
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography

Related Publications

S K Burgess, and P A Trimmer, and K D McCarthy
July 1983, The Journal of pharmacology and experimental therapeutics,
S K Burgess, and P A Trimmer, and K D McCarthy
March 1981, Proceedings of the National Academy of Sciences of the United States of America,
S K Burgess, and P A Trimmer, and K D McCarthy
January 1984, Advances in cyclic nucleotide and protein phosphorylation research,
S K Burgess, and P A Trimmer, and K D McCarthy
January 1985, Acta pharmacologica et toxicologica,
S K Burgess, and P A Trimmer, and K D McCarthy
July 1992, The Journal of pharmacology and experimental therapeutics,
S K Burgess, and P A Trimmer, and K D McCarthy
August 1987, Investigative ophthalmology & visual science,
S K Burgess, and P A Trimmer, and K D McCarthy
November 1988, Molecular and cellular endocrinology,
S K Burgess, and P A Trimmer, and K D McCarthy
March 1970, Japanese journal of pharmacology,
Copied contents to your clipboard!