Autoradiographic localization of benzodiazepine receptors in immunocytochemically identified gamma-aminobutyrergic synapses. 1981

H Möhler, and J G Richards, and J Y Wu

Benzodiazepine receptors can be visualized in regions of synaptic contact by electron microscopic autoradiography using [3H]flunitrazepam as a photoaffinity label in fresh brain tissue. Perfusion fixation of the tissue prior to photoaffinity labeling left the ligand binding characteristics and the light and electron microscopic distribution of benzodiazepine receptors unaltered. Therefore, the immunocytochemical localization of a neuronal marker in fixed tissue could be combined with photoaffinity labeling in order to identify the types of synapses containing benzodiazepine receptors. By using antiserum to glutamate decarboxylase, a marker of gamma-aminobutyrergic neurons, one-third of the photolabeled benzodiazepine receptors were found to be associated with immunocytochemically stained nerve endings. Thus, these synapses are the site of at lest some benzodiazepine receptors. The enhancement of gamma-aminobutyrergic synaptic transmission by benzodiazepines, shown electrophysiologically, appears to be a primary mechanism of action of this group of drugs.

UI MeSH Term Description Entries
D011955 Receptors, Drug Proteins that bind specific drugs with high affinity and trigger intracellular changes influencing the behavior of cells. Drug receptors are generally thought to be receptors for some endogenous substance not otherwise specified. Drug Receptors,Drug Receptor,Receptor, Drug
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D002525 Cerebellar Cortex The superficial GRAY MATTER of the CEREBELLUM. It consists of two main layers, the stratum moleculare and the stratum granulosum. Cortex Cerebelli,Cerebelli, Cortex,Cerebellus, Cortex,Cortex Cerebellus,Cortex, Cerebellar
D005445 Flunitrazepam A benzodiazepine with pharmacologic actions similar to those of DIAZEPAM that can cause ANTEROGRADE AMNESIA. Some reports indicate that it is used as a date rape drug and suggest that it may precipitate violent behavior. The United States Government has banned the importation of this drug. Fluridrazepam,Rohypnol,Fluni 1A Pharma,Flunibeta,Flunimerck,Fluninoc,Flunitrazepam-Neuraxpharm,Flunitrazepam-Ratiopharm,Flunitrazepam-Teva,Flunizep Von Ct,Narcozep,RO-5-4200,Rohipnol,Flunitrazepam Neuraxpharm,Flunitrazepam Ratiopharm,Flunitrazepam Teva,RO54200,Von Ct, Flunizep
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D000345 Affinity Labels Analogs of those substrates or compounds which bind naturally at the active sites of proteins, enzymes, antibodies, steroids, or physiological receptors. These analogs form a stable covalent bond at the binding site, thereby acting as inhibitors of the proteins or steroids. Affinity Labeling Reagents,Labeling Reagents, Affinity,Labels, Affinity,Reagents, Affinity Labeling
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D014151 Anti-Anxiety Agents Agents that alleviate ANXIETY, tension, and ANXIETY DISORDERS, promote sedation, and have a calming effect without affecting clarity of consciousness or neurologic conditions. ADRENERGIC BETA-ANTAGONISTS are commonly used in the symptomatic treatment of anxiety but are not included here. Anti-Anxiety Agent,Anti-Anxiety Drug,Anxiolytic,Anxiolytic Agent,Anxiolytic Agents,Tranquilizing Agents, Minor,Anti-Anxiety Drugs,Anti-Anxiety Effect,Anti-Anxiety Effects,Antianxiety Effect,Antianxiety Effects,Anxiolytic Effect,Anxiolytic Effects,Anxiolytics,Tranquillizing Agents, Minor,Agent, Anti-Anxiety,Agent, Anxiolytic,Agents, Anti-Anxiety,Agents, Anxiolytic,Agents, Minor Tranquilizing,Agents, Minor Tranquillizing,Anti Anxiety Agent,Anti Anxiety Agents,Anti Anxiety Drug,Anti Anxiety Drugs,Anti Anxiety Effect,Anti Anxiety Effects,Drug, Anti-Anxiety,Drugs, Anti-Anxiety,Effect, Anti-Anxiety,Effect, Antianxiety,Effect, Anxiolytic,Effects, Anti-Anxiety,Effects, Antianxiety,Effects, Anxiolytic,Minor Tranquilizing Agents,Minor Tranquillizing Agents

Related Publications

H Möhler, and J G Richards, and J Y Wu
November 1984, The American journal of physiology,
H Möhler, and J G Richards, and J Y Wu
October 1983, Brain research,
H Möhler, and J G Richards, and J Y Wu
January 1986, The Journal of pharmacology and experimental therapeutics,
H Möhler, and J G Richards, and J Y Wu
May 1985, The Journal of pharmacology and experimental therapeutics,
H Möhler, and J G Richards, and J Y Wu
July 1983, The Journal of pharmacology and experimental therapeutics,
H Möhler, and J G Richards, and J Y Wu
November 1987, Brain research,
H Möhler, and J G Richards, and J Y Wu
January 1980, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!