Partial suppression of an ochre mutation in Saccharomyces cerevisiae by multicopy plasmids containing a normal yeast tRNAGln gene. 1985

G A Pure, and G W Robinson, and L Naumovski, and E C Friedberg

We screened a yeast genomic library for recombinant DNA plasmids that complemented the ultraviolet (u.v.) sensitivity of a strain of Saccharomyces cerevisiae designated rad4-3 that is defective in excision repair of DNA. A multicopy plasmid (pNF4000) with a 9.4 X 10(3) base-pair yeast DNA insert partially complemented the u.v. sensitivity of rad4-3, but not of two other rad4 allelic mutants (rad4-2 and rad4-4), or of other u.v.-sensitive rad mutants. The yeast insert was analyzed by restriction mapping, DNA-DNA hybridization, DNA-tRNA hybridization and DNA sequencing. This analysis revealed the presence of a normal tRNAGln gene, a yeast sigma element situated 5' to the transfer RNA gene, a Ty element and a solo delta element. Deletion analysis of pNF4000 showed that the tRNAGln gene is required for partial complementation of the u.v. sensitivity of rad4-3. Furthermore, a multicopy plasmid containing a tRNAGln gene derived from a different region of the yeast genome also partially complemented the u.v. sensitivity of rad4-3. The rad4-3 mutation is suppressed following transformation with a plasmid containing the known ochre suppressor SUP11-o, indicating that it is an ochre mutation. We therefore conclude that when expressed in sufficient quantity, normal tRNAGln (which usually decodes the sense codon CAA) can weakly suppress the nonsense ochre codon UAA, and suggest that this represents an example of wobble occurring at the first rather than at the third position of the codon.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004271 DNA, Fungal Deoxyribonucleic acid that makes up the genetic material of fungi. Fungal DNA
D004274 DNA, Recombinant Biologically active DNA which has been formed by the in vitro joining of segments of DNA from different sources. It includes the recombination joint or edge of a heteroduplex region where two recombining DNA molecules are connected. Genes, Spliced,Recombinant DNA,Spliced Gene,Recombinant DNA Research,Recombination Joint,DNA Research, Recombinant,Gene, Spliced,Joint, Recombination,Research, Recombinant DNA,Spliced Genes
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012331 RNA, Fungal Ribonucleic acid in fungi having regulatory and catalytic roles as well as involvement in protein synthesis. Fungal RNA
D012346 RNA, Transfer, Amino Acyl Intermediates in protein biosynthesis. The compounds are formed from amino acids, ATP and transfer RNA, a reaction catalyzed by aminoacyl tRNA synthetase. They are key compounds in the genetic translation process. Amino Acyl tRNA,Transfer RNA, Amino Acyl,tRNA-Amino Acyl,Amino Acyl T RNA,Acyl tRNA, Amino,Acyl, tRNA-Amino,tRNA Amino Acyl,tRNA, Amino Acyl

Related Publications

G A Pure, and G W Robinson, and L Naumovski, and E C Friedberg
February 1980, FEBS letters,
G A Pure, and G W Robinson, and L Naumovski, and E C Friedberg
August 1991, FEMS microbiology letters,
G A Pure, and G W Robinson, and L Naumovski, and E C Friedberg
July 1980, Current genetics,
G A Pure, and G W Robinson, and L Naumovski, and E C Friedberg
May 1996, Current genetics,
G A Pure, and G W Robinson, and L Naumovski, and E C Friedberg
November 1997, Gene,
G A Pure, and G W Robinson, and L Naumovski, and E C Friedberg
January 2016, Journal of microbiological methods,
G A Pure, and G W Robinson, and L Naumovski, and E C Friedberg
November 1987, Proceedings of the National Academy of Sciences of the United States of America,
G A Pure, and G W Robinson, and L Naumovski, and E C Friedberg
July 1982, Nature,
Copied contents to your clipboard!