Suppression of the Saccharomyces cerevisiae hac1/ire15 mutation by yeast genes and human cDNAs. 1997

J Nikawa, and M Sugiyama, and K Hayashi, and A Nakashima
Department of Biochemical Engineering and Science, Kyushu Institute of Technology, Iizuka, Fukuoka, Japan. nikawa@bse.kyutech.ac.jp

We previously reported that the Saccharomyces cerevisiae ire15 mutation results in an inositol-auxotrophic phenotype, and that human cDNAs can suppress the ire15 mutation (Nikawa, J., 1994. A cDNA encoding the human transforming growth factor beta receptor suppresses the growth defect of a yeast mutant. Gene 149, 367 372; Nikawa, J., Nakano, H., Ohi, N., 1996b. Structural and functional conservation of human and yeast HAC1 genes which can suppress the growth defect of the Saccharomyces cerevisiae ire15 mutant. Gene 171, 107-111). Herein, we present evidence that the gene responsible for the ire15 mutation is HAC1, which encodes a transcription factor for KAR2, obtained by isolating a yeast single-copy supressor gene and by performing complementation analysis. Sequencing analysis revealed that the mutant HAC1 gene obtained from the ire15 mutant contained an AAA codon at position 50 instead of the AGA codon observed in the wild-type gene, resulting in the alteration of the aa from Arg to Lys. All human cDNAs and yeast multicopy suppressors, which had been isolated as suppressors for the ire15 mutation, were able to suppress the inositol-auxotrophic phenotype but not the defect in KAR2 induction of the hac1-disrupted strain.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010749 Phosphoprotein Phosphatases A group of enzymes removing the SERINE- or THREONINE-bound phosphate groups from a wide range of phosphoproteins, including a number of enzymes which have been phosphorylated under the action of a kinase. (Enzyme Nomenclature, 1992) Phosphoprotein Phosphatase,Phosphoprotein Phosphohydrolase,Protein Phosphatase,Protein Phosphatases,Casein Phosphatase,Ecto-Phosphoprotein Phosphatase,Nuclear Protein Phosphatase,Phosphohistone Phosphatase,Phosphoprotein Phosphatase-2C,Phosphoseryl-Protein Phosphatase,Protein Phosphatase C,Protein Phosphatase C-I,Protein Phosphatase C-II,Protein Phosphatase H-II,Protein-Serine-Threonine Phosphatase,Protein-Threonine Phosphatase,Serine-Threonine Phosphatase,Threonine Phosphatase,Ecto Phosphoprotein Phosphatase,Phosphatase C, Protein,Phosphatase C-I, Protein,Phosphatase C-II, Protein,Phosphatase H-II, Protein,Phosphatase, Casein,Phosphatase, Ecto-Phosphoprotein,Phosphatase, Nuclear Protein,Phosphatase, Phosphohistone,Phosphatase, Phosphoprotein,Phosphatase, Phosphoseryl-Protein,Phosphatase, Protein,Phosphatase, Protein-Serine-Threonine,Phosphatase, Protein-Threonine,Phosphatase, Serine-Threonine,Phosphatase, Threonine,Phosphatase-2C, Phosphoprotein,Phosphatases, Phosphoprotein,Phosphatases, Protein,Phosphohydrolase, Phosphoprotein,Phosphoprotein Phosphatase 2C,Phosphoseryl Protein Phosphatase,Protein Phosphatase C I,Protein Phosphatase C II,Protein Phosphatase H II,Protein Phosphatase, Nuclear,Protein Serine Threonine Phosphatase,Protein Threonine Phosphatase,Serine Threonine Phosphatase
D011484 Protein-Arginine N-Methyltransferases Enzymes that catalyze the methylation of arginine residues of proteins to yield N-mono- and N,N-dimethylarginine. This enzyme is found in many organs, primarily brain and spleen. Protein Arginine Methyltransferase,Protein Methylase I,Protein Methyltransferase I,Protein-Arginine N-Methyltransferase,(Myelin Basic Protein)-Arginine N-Methyltransferase,Arginine Methylase,Myelin Basic Protein (Arginine) Methyltransferase,Type I Protein Arginine Methyltransferase,Type I Protein Arginine N-Methyltransferase,Type II Protein Arginine Methyltransferase,Arginine Methyltransferase, Protein,Methyltransferase, Protein Arginine,Protein Arginine N Methyltransferase,Protein Arginine N Methyltransferases,Type I Protein Arginine N Methyltransferase
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

J Nikawa, and M Sugiyama, and K Hayashi, and A Nakashima
February 1980, FEBS letters,
J Nikawa, and M Sugiyama, and K Hayashi, and A Nakashima
April 2020, Applied microbiology and biotechnology,
J Nikawa, and M Sugiyama, and K Hayashi, and A Nakashima
June 2019, International journal of molecular sciences,
J Nikawa, and M Sugiyama, and K Hayashi, and A Nakashima
January 2022, Methods in molecular biology (Clifton, N.J.),
J Nikawa, and M Sugiyama, and K Hayashi, and A Nakashima
September 1995, Journal of bacteriology,
J Nikawa, and M Sugiyama, and K Hayashi, and A Nakashima
July 1992, Yeast (Chichester, England),
J Nikawa, and M Sugiyama, and K Hayashi, and A Nakashima
January 1989, Nucleic acids research,
J Nikawa, and M Sugiyama, and K Hayashi, and A Nakashima
January 1978, Acta microbiologica Polonica,
J Nikawa, and M Sugiyama, and K Hayashi, and A Nakashima
May 1985, Journal of molecular biology,
J Nikawa, and M Sugiyama, and K Hayashi, and A Nakashima
January 1986, Basic life sciences,
Copied contents to your clipboard!