SV40 enhancer and large-T antigen are instrumental in development of choroid plexus tumours in transgenic mice. 1985

R D Palmiter, and H Y Chen, and A Messing, and R L Brinster

We have shown recently that choroid plexus tumours frequently develop in transgenic mice which have developed from fertilized eggs injected with DNA molecules containing both simian virus 40 (SV40) early-region genes and metallothionein (MT) fusion genes, and several lines of mice have now been established in which all of the offspring that inherit the foreign DNA succumb to these tumours at 3-5 months of age (ref. 1 and our unpublished data). Several other tissues, notably thymus and kidney, occasionally also show pathological changes. SV40 large-T antigen protein and messenger RNA are always present in affected tissues at much greater concentrations than in unaffected tissues, suggesting that SV40 early-region genes are preferentially activated in choroid plexus, thymus and kidney and that this activation frequently leads to tumorigenesis in the choroid plexus. To determine which regions of the original constructs are important for this tumorigenesis, we have now tested several derivatives and report here that the large-T antigen is sufficient, that the MT fusion gene is dispensable and that the SV40 enhancer (72-base-pair repeat region) has an important role in directing tumours to the choroid plexus. Deletion of the SV40 enhancer region alone commonly leads to peripheral neuropathy, as well as liver and pancreatic tumours, which are the subject of the accompanying paper. Evidence is presented that these pathologies may result from an enhancing effect of the MT sequences on large-T antigen genes, made possible by removal of the otherwise dominant SV40 enhancer.

UI MeSH Term Description Entries
D008668 Metallothionein A low-molecular-weight (approx. 10 kD) protein occurring in the cytoplasm of kidney cortex and liver. It is rich in cysteinyl residues and contains no aromatic amino acids. Metallothionein shows high affinity for bivalent heavy metals. Isometallothionein,Metallothionein A,Metallothionein B,Metallothionein I,Metallothionein II,Metallothionein IIA
D010212 Papilloma A circumscribed benign epithelial tumor projecting from the surrounding surface; more precisely, a benign epithelial neoplasm consisting of villous or arborescent outgrowths of fibrovascular stroma covered by neoplastic cells. (Stedman, 25th ed) Papilloma, Squamous Cell,Papillomatosis,Papillomas,Papillomas, Squamous Cell,Papillomatoses,Squamous Cell Papilloma,Squamous Cell Papillomas
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D002104 Cadmium An element with atomic symbol Cd, atomic number 48, and atomic weight 112.41. It is a metal and ingestion will lead to CADMIUM POISONING.
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D002551 Cerebral Ventricle Neoplasms Neoplasms located in the brain ventricles, including the two lateral, the third, and the fourth ventricle. Ventricular tumors may be primary (e.g., CHOROID PLEXUS NEOPLASMS and GLIOMA, SUBEPENDYMAL), metastasize from distant organs, or occur as extensions of locally invasive tumors from adjacent brain structures. Intraventricular Neoplasms,Ventricular Neoplasms, Brain,Ventricular Tumors, Brain,Brain Ventricular Neoplasms,Cerebral Ventricle Tumors,Cerebroventricular Neoplasms,Neoplasms, Cerebral Ventricle,Neoplasms, Cerebroventricular,Neoplasms, Intraventricular,Neoplasms, Ventricular, Brain,Brain Ventricular Neoplasm,Brain Ventricular Tumor,Brain Ventricular Tumors,Cerebral Ventricle Neoplasm,Cerebral Ventricle Tumor,Cerebroventricular Neoplasm,Intraventricular Neoplasm,Neoplasm, Brain Ventricular,Neoplasm, Cerebral Ventricle,Neoplasm, Cerebroventricular,Neoplasm, Intraventricular,Neoplasms, Brain Ventricular,Tumor, Brain Ventricular,Tumor, Cerebral Ventricle,Tumors, Brain Ventricular,Tumors, Cerebral Ventricle,Ventricle Tumor, Cerebral,Ventricle Tumors, Cerebral,Ventricular Neoplasm, Brain,Ventricular Tumor, Brain
D002831 Choroid Plexus A villous structure of tangled masses of BLOOD VESSELS contained within the third, lateral, and fourth ventricles of the BRAIN. It regulates part of the production and composition of CEREBROSPINAL FLUID. Chorioid Plexus,Plexus Choroideus,Choroideus, Plexus,Plexus, Chorioid,Plexus, Choroid
D004742 Enhancer Elements, Genetic Cis-acting DNA sequences which can increase transcription of genes. Enhancers can usually function in either orientation and at various distances from a promoter. Enhancer Elements,Enhancer Sequences,Element, Enhancer,Element, Genetic Enhancer,Elements, Enhancer,Elements, Genetic Enhancer,Enhancer Element,Enhancer Element, Genetic,Enhancer Sequence,Genetic Enhancer Element,Genetic Enhancer Elements,Sequence, Enhancer,Sequences, Enhancer
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic

Related Publications

R D Palmiter, and H Y Chen, and A Messing, and R L Brinster
January 1988, Oncogene research,
R D Palmiter, and H Y Chen, and A Messing, and R L Brinster
December 2001, Journal of immunology (Baltimore, Md. : 1950),
R D Palmiter, and H Y Chen, and A Messing, and R L Brinster
January 1988, Immunogenetics,
R D Palmiter, and H Y Chen, and A Messing, and R L Brinster
October 1996, Cancer letters,
R D Palmiter, and H Y Chen, and A Messing, and R L Brinster
February 1990, Oncogene,
R D Palmiter, and H Y Chen, and A Messing, and R L Brinster
May 1993, The American journal of physiology,
R D Palmiter, and H Y Chen, and A Messing, and R L Brinster
January 1989, Immunogenetics,
R D Palmiter, and H Y Chen, and A Messing, and R L Brinster
November 1991, Carcinogenesis,
Copied contents to your clipboard!