TMEM16F/ANO6, a Ca2+-activated anion channel, is negatively regulated by the actin cytoskeleton and intracellular MgATP. 2018

Haiyue Lin, and Jaewon Roh, and Joo Han Woo, and Sung Joon Kim, and Joo Hyun Nam
Department of Physiology, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.

Anoctamin 6 (ANO6/TMEM16F) is a recently identified membrane protein that has both phospholipid scramblase activity and anion channel function activated by relatively high [Ca2+]i. In addition to the low sensitivity to Ca2+, the activation of ANO6 Cl- conductance is very slow (>3-5 min to reach peak level at 10 μM [Ca2+]i), with subsequent inactivation. In a whole-cell patch clamp recording of ANO6 current (IANO6,w-c), disruption of the actin cytoskeleton with cytochalasin-D (cytoD) significantly accelerated the activation kinetics, while actin filament-stabilizing agents (phalloidin and jasplakinolide) commonly inhibited IANO6,w-c. Inside-out patch clamp recording of ANO6 (IANO6,i-o) showed immediate activation by raising [Ca2+]i. We also found that intracellular ATP (3 mM MgATP in pipette solution) decelerated the activation of IANO6,w-c, and also prevented the inactivation of IANO6,w-c. However, the addition of cytoD still accelerated both activation and inactivation of IANO6,w-c. We conclude that the actin cytoskeleton and intracellular ATP play major roles in the Ca2+-dependent activation and inactivation of IANO6,w-c, respectively.

UI MeSH Term Description Entries
D008841 Actin Cytoskeleton Fibers composed of MICROFILAMENT PROTEINS, which are predominately ACTIN. They are the smallest of the cytoskeletal filaments. Actin Filaments,Microfilaments,Actin Microfilaments,Actin Cytoskeletons,Actin Filament,Actin Microfilament,Cytoskeleton, Actin,Cytoskeletons, Actin,Filament, Actin,Filaments, Actin,Microfilament,Microfilament, Actin,Microfilaments, Actin
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000075368 Anoctamins A family of transmembrane proteins that function primarily as calcium-activated chloride channels. Structurally, they form a homodimer where each subunit consists of eight transmembrane helices with the N and C terminals exposed to the cytosol. The regions between helices 5 and 7 may be important for ion pore formation and calcium ion binding. Anoctamin,TMEM16 Protein Family,TMEM16 Proteins,Protein Family, TMEM16
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D049294 Phospholipid Transfer Proteins A ubiquitous family of proteins that transport PHOSPHOLIPIDS such as PHOSPHATIDYLINOSITOL and PHOSPHATIDYLCHOLINE between membranes. They play an important role in phospholipid metabolism during vesicular transport and SIGNAL TRANSDUCTION. Phosphatidylinositol Transfer Proteins,Aminophospholipid Flippase,Aminophospholipid Transfer Proteins,Aminophospholipid Translocase,Aminophospholipid Translocator,Aminophospholipid Transporter,Lecithin Transfer Protein,Nonspecific Phospholipid Transfer proteins,Phosphatidyl Transfer Protein,Phosphatidylcholine Exchange Protein,Phosphatidylcholine Transfer Protein,Phosphatidylcholine Transfer Proteins,Phosphatidylinositol Exchange Protein,Phosphatidylinositol Transfer Protein,Phosphatidylinositol Transfer Protein alpha,Phosphatidylinositol Transfer Protein beta,Phosphatidylserine Translocase,Phospholipid Exchange Protein,Phospholipid Exchange Proteins,Phospholipid Scramblase,Phospholipid Transfer Protein,Phospholipid Translocating Protein,Scramblase, Phospholipid,Transfer Proteins, Phospholipid,Translocase, Aminophospholipid,Translocase, Phosphatidylserine,Translocator, Aminophospholipid,Transporter, Aminophospholipid
D057809 HEK293 Cells A cell line generated from human embryonic kidney cells that were transformed with human adenovirus type 5. 293T Cells,HEK 293 Cell Line,HEK 293 Cells,Human Embryonic Kidney Cell Line 293,Human Kidney Cell Line 293,293 Cell, HEK,293 Cells, HEK,293T Cell,Cell, 293T,Cell, HEK 293,Cell, HEK293,Cells, 293T,Cells, HEK 293,Cells, HEK293,HEK 293 Cell,HEK293 Cell
D018408 Patch-Clamp Techniques An electrophysiologic technique for studying cells, cell membranes, and occasionally isolated organelles. All patch-clamp methods rely on a very high-resistance seal between a micropipette and a membrane; the seal is usually attained by gentle suction. The four most common variants include on-cell patch, inside-out patch, outside-out patch, and whole-cell clamp. Patch-clamp methods are commonly used to voltage clamp, that is control the voltage across the membrane and measure current flow, but current-clamp methods, in which the current is controlled and the voltage is measured, are also used. Patch Clamp Technique,Patch-Clamp Technic,Patch-Clamp Technique,Voltage-Clamp Technic,Voltage-Clamp Technique,Voltage-Clamp Techniques,Whole-Cell Recording,Patch-Clamp Technics,Voltage-Clamp Technics,Clamp Technique, Patch,Clamp Techniques, Patch,Patch Clamp Technic,Patch Clamp Technics,Patch Clamp Techniques,Recording, Whole-Cell,Recordings, Whole-Cell,Technic, Patch-Clamp,Technic, Voltage-Clamp,Technics, Patch-Clamp,Technics, Voltage-Clamp,Technique, Patch Clamp,Technique, Patch-Clamp,Technique, Voltage-Clamp,Techniques, Patch Clamp,Techniques, Patch-Clamp,Techniques, Voltage-Clamp,Voltage Clamp Technic,Voltage Clamp Technics,Voltage Clamp Technique,Voltage Clamp Techniques,Whole Cell Recording,Whole-Cell Recordings

Related Publications

Haiyue Lin, and Jaewon Roh, and Joo Han Woo, and Sung Joon Kim, and Joo Hyun Nam
August 2021, International journal of molecular sciences,
Haiyue Lin, and Jaewon Roh, and Joo Han Woo, and Sung Joon Kim, and Joo Hyun Nam
January 2015, Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology,
Haiyue Lin, and Jaewon Roh, and Joo Han Woo, and Sung Joon Kim, and Joo Hyun Nam
September 2015, The Journal of physiology,
Haiyue Lin, and Jaewon Roh, and Joo Han Woo, and Sung Joon Kim, and Joo Hyun Nam
April 2013, American journal of physiology. Cell physiology,
Haiyue Lin, and Jaewon Roh, and Joo Han Woo, and Sung Joon Kim, and Joo Hyun Nam
July 1996, The Journal of biological chemistry,
Haiyue Lin, and Jaewon Roh, and Joo Han Woo, and Sung Joon Kim, and Joo Hyun Nam
August 2002, The Journal of physiology,
Haiyue Lin, and Jaewon Roh, and Joo Han Woo, and Sung Joon Kim, and Joo Hyun Nam
February 2006, The EMBO journal,
Haiyue Lin, and Jaewon Roh, and Joo Han Woo, and Sung Joon Kim, and Joo Hyun Nam
June 1998, Journal of cell science,
Haiyue Lin, and Jaewon Roh, and Joo Han Woo, and Sung Joon Kim, and Joo Hyun Nam
January 2018, The Journal of physiology,
Haiyue Lin, and Jaewon Roh, and Joo Han Woo, and Sung Joon Kim, and Joo Hyun Nam
April 2019, The Journal of biological chemistry,
Copied contents to your clipboard!