ADP/ATP carrier protein from beef heart mitochondria has high amounts of tightly bound cardiolipin, as revealed by 31P nuclear magnetic resonance. 1985

K Beyer, and M Klingenberg

An unusual binding of cardiolipin to the ADP/ATP carrier has been found, which is distinguished by the relatively large amount and by the tightness of binding. High-resolution 31P NMR studies on the detergent-solubilized ADP/ATP carrier from beef heart mitochondria revealed narrow signals from phosphatidylcholine and phosphatidylethanolamine and a broadened signal of 30-40-Hz line width, suggestive of cardiolipin. Line broadening of this magnitude is to be expected when tumbling of the whole protein-detergent micelle is the only source of phosphorus spin-spin relaxation. Thus a strong immobilization of the protein-bound cardiolipin is inferred. By sucrose density gradient centrifugation phosphatidylcholine and phosphatidylethanolamine were removed, while approximately six +/- one molecules of cardiolipin remained tightly bound in the dimeric protein molecule. The cardiolipin binding was stable against treatment with sodium dodecyl sulfate although release of the inhibitor carboxyatractyloside revealed at least partial protein denaturation. Ca2+ ions did not readily interact either with the bound cardiolipin. Complete detachment of the bound phospholipid was achieved by a short heat pulse in the presence of sodium dodecyl sulfate. Denaturation of the carrier protein by guanidinium chloride or NaClO4 also led to release of the bound phospholipid. Thus different stages of protein denaturation must be envisaged.

UI MeSH Term Description Entries
D008929 Mitochondria, Heart The mitochondria of the myocardium. Heart Mitochondria,Myocardial Mitochondria,Mitochondrion, Heart,Heart Mitochondrion,Mitochondria, Myocardial
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D009713 Nucleotidyltransferases A class of enzymes that transfers nucleotidyl residues. EC 2.7.7. Nucleotidyltransferase
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D002308 Cardiolipins Acidic phospholipids composed of two molecules of phosphatidic acid covalently linked to a molecule of glycerol. They occur primarily in mitochondrial inner membranes and in bacterial plasma membranes. They are the main antigenic components of the Wassermann-type antigen that is used in nontreponemal SYPHILIS SERODIAGNOSIS. Cardiolipin,Diphosphatidylglycerol,Diphosphatidylglycerols
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D000226 Mitochondrial ADP, ATP Translocases A class of nucleotide translocases found abundantly in mitochondria that function as integral components of the inner mitochondrial membrane. They facilitate the exchange of ADP and ATP between the cytosol and the mitochondria, thereby linking the subcellular compartments of ATP production to those of ATP utilization. ADP,ATP Carrier,ADP,ATP Translocator Protein,Adenine Nucleotide Translocase,ADP Translocase,ATP Translocase,ATP,ADP-Carrier,ATP-ADP Translocase,Adenine Nucleotide Carrier (Mitochondrial),Mitochondrial ADP-ATP Carriers,ADP-ATP Carriers, Mitochondrial,Mitochondrial ADP ATP Carriers
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

K Beyer, and M Klingenberg
March 1982, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
K Beyer, and M Klingenberg
April 1978, European journal of biochemistry,
K Beyer, and M Klingenberg
February 1982, European journal of biochemistry,
K Beyer, and M Klingenberg
August 1978, Biochimica et biophysica acta,
K Beyer, and M Klingenberg
April 1978, Proceedings of the National Academy of Sciences of the United States of America,
K Beyer, and M Klingenberg
February 1986, Biochimica et biophysica acta,
K Beyer, and M Klingenberg
January 1983, The Japanese journal of physiology,
Copied contents to your clipboard!