The induction of cytochrome P-450 by isosafrole and related methylenedioxyphenyl compounds. 1985

J C Cook, and E Hodgson

Using sucrose gradients, the Ah receptor and a 3-4S binding peak were measured in hepatic cytosol from Dub: ICR, C57BL/6, and DBA/2 male mice. Isosafrole, piperonyl butoxide, and 5-t-butyl-1,3-benzodioxole were unable to displace 2,3,7,8-tetrachlorodibenzo-p-dioxin or 3-methylcholanthrene from either the Ah receptor or the 3-4S binding peak, in vitro. In in vivo experiments, treatment of C57BL/6 mice with 3-methylcholanthrene caused a 4-fold reduction in Ah receptor binding 2 h after i.p. injection; whereas, isosafrole caused a 2-fold enhancement of the Ah receptor after 24 h. This increase in the Ah receptor binding following isosafrole treatment may be due to induction. 3-Methylcholanthrene treatment of C57BL/6 mice also caused a 3-fold reduction in the 3-4S binding peak 2 h after i.p. injection; isosafrole treatment had little or no effect on the 3-4S peak in C57BL/6 or DBA/2 mice. Both in vivo and in vitro data appear to demonstrate that there is no direct role for the Ah receptor or the 3-4S protein in the regulation of cytochrome P-450 by methylenedioxyphenyl compounds. Using Sephadex G-100 chromatography, a cytosolic protein fraction was obtained from C57BL/6 and Dub:ICR mice which was previously implicated by others as a carrier in the metabolism of benzo[a]pyrene (B[a]P). This fraction was applied to sucrose gradients and sedimented in the 3-4S region. Hence it appears that the 3-4S binding peak may be the carrier described by these workers.

UI MeSH Term Description Entries
D007536 Isomerism The phenomenon whereby certain chemical compounds have structures that are different although the compounds possess the same elemental composition. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Isomerisms
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008748 Methylcholanthrene A carcinogen that is often used in experimental cancer studies. 20-Methylcholanthrene,3-Methylcholanthrene,20 Methylcholanthrene,3 Methylcholanthrene
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D011955 Receptors, Drug Proteins that bind specific drugs with high affinity and trigger intracellular changes influencing the behavior of cells. Drug receptors are generally thought to be receptors for some endogenous substance not otherwise specified. Drug Receptors,Drug Receptor,Receptor, Drug
D003433 Crosses, Genetic Deliberate breeding of two different individuals that results in offspring that carry part of the genetic material of each parent. The parent organisms must be genetically compatible and may be from different varieties or closely related species. Cross, Genetic,Genetic Cross,Genetic Crosses
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D004149 Dioxoles

Related Publications

J C Cook, and E Hodgson
March 1993, Chemico-biological interactions,
J C Cook, and E Hodgson
April 1985, Xenobiotica; the fate of foreign compounds in biological systems,
J C Cook, and E Hodgson
July 1986, Biokhimiia (Moscow, Russia),
J C Cook, and E Hodgson
January 1976, Advances in experimental medicine and biology,
J C Cook, and E Hodgson
January 1979, Biochemical pharmacology,
J C Cook, and E Hodgson
April 1985, Xenobiotica; the fate of foreign compounds in biological systems,
Copied contents to your clipboard!