Liquid-Phase Measurements of Photosynthetic Oxygen Evolution. 2018

Dmitriy Shevela, and Wolfgang P Schröder, and Johannes Messinger
Department of Chemistry, Umeå University, Umeå, Sweden. dmitry.shevela@umu.se.

This chapter compares two different techniques for monitoring photosynthetic O2 production: the widespread Clark-type O2 electrode and the more sophisticated membrane inlet mass spectrometry (MIMS) technique. We describe how a simple membrane inlet for MIMS can be made out of a commercial Clark-type cell, and outline the advantages and drawbacks of the two techniques to guide researchers in deciding which method to use. Protocols and examples are given for measuring O2 evolution rates and for determining the number of chlorophyll molecules per active photosystem II reaction center.

UI MeSH Term Description Entries
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D010788 Photosynthesis The synthesis by organisms of organic chemical compounds, especially carbohydrates, from carbon dioxide using energy obtained from light rather than from the oxidation of chemical compounds. Photosynthesis comprises two separate processes: the light reactions and the dark reactions. In higher plants; GREEN ALGAE; and CYANOBACTERIA; NADPH and ATP formed by the light reactions drive the dark reactions which result in the fixation of carbon dioxide. (from Oxford Dictionary of Biochemistry and Molecular Biology, 2001) Calvin Cycle,Calvin-Benson Cycle,Calvin-Benson-Bassham Cycle,Carbon Fixation, Photosynthetic,Reductive Pentose Phosphate Cycle,Dark Reactions of Photosynthesis,Calvin Benson Bassham Cycle,Calvin Benson Cycle,Cycle, Calvin,Cycle, Calvin-Benson,Cycle, Calvin-Benson-Bassham,Photosynthesis Dark Reaction,Photosynthesis Dark Reactions,Photosynthetic Carbon Fixation
D004566 Electrodes Electric conductors through which electric currents enter or leave a medium, whether it be an electrolytic solution, solid, molten mass, gas, or vacuum. Anode,Anode Materials,Cathode,Cathode Materials,Anode Material,Anodes,Cathode Material,Cathodes,Electrode,Material, Anode,Material, Cathode
D004867 Equipment Design Methods and patterns of fabricating machines and related hardware. Design, Equipment,Device Design,Medical Device Design,Design, Medical Device,Designs, Medical Device,Device Design, Medical,Device Designs, Medical,Medical Device Designs,Design, Device,Designs, Device,Designs, Equipment,Device Designs,Equipment Designs
D001681 Biological Assay A method of measuring the effects of a biologically active substance using an intermediate in vivo or in vitro tissue or cell model under controlled conditions. It includes virulence studies in animal fetuses in utero, mouse convulsion bioassay of insulin, quantitation of tumor-initiator systems in mouse skin, calculation of potentiating effects of a hormonal factor in an isolated strip of contracting stomach muscle, etc. Bioassay,Assay, Biological,Assays, Biological,Biologic Assay,Biologic Assays,Assay, Biologic,Assays, Biologic,Bioassays,Biological Assays
D013058 Mass Spectrometry An analytical method used in determining the identity of a chemical based on its mass using mass analyzers/mass spectrometers. Mass Spectroscopy,Spectrometry, Mass,Spectroscopy, Mass,Spectrum Analysis, Mass,Analysis, Mass Spectrum,Mass Spectrum Analysis,Analyses, Mass Spectrum,Mass Spectrum Analyses,Spectrum Analyses, Mass
D014867 Water A clear, odorless, tasteless liquid that is essential for most animal and plant life and is an excellent solvent for many substances. The chemical formula is hydrogen oxide (H2O). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Hydrogen Oxide
D018521 Plant Physiological Phenomena The physiological processes, properties, and states characteristic of plants. Plant Physiological Processes,Plant Physiology,Physiology, Plant,Plant Physiologic Phenomena,Plant Physiologic Phenomenon,Plant Physiological Phenomenon,Plant Physiological Process,Phenomena, Plant Physiologic,Phenomena, Plant Physiological,Phenomenon, Plant Physiologic,Phenomenon, Plant Physiological,Phenomenons, Plant Physiological,Physiologic Phenomena, Plant,Physiologic Phenomenon, Plant,Physiological Phenomena, Plant,Physiological Phenomenon, Plant,Physiological Phenomenons, Plant,Physiological Process, Plant,Physiological Processes, Plant,Plant Physiological Phenomenons,Process, Plant Physiological,Processes, Plant Physiological

Related Publications

Dmitriy Shevela, and Wolfgang P Schröder, and Johannes Messinger
May 1964, Science (New York, N.Y.),
Dmitriy Shevela, and Wolfgang P Schröder, and Johannes Messinger
January 2007, Plant & cell physiology,
Dmitriy Shevela, and Wolfgang P Schröder, and Johannes Messinger
May 1978, Biochimica et biophysica acta,
Dmitriy Shevela, and Wolfgang P Schröder, and Johannes Messinger
July 1972, Biophysical journal,
Dmitriy Shevela, and Wolfgang P Schröder, and Johannes Messinger
September 1965, Biochimica et biophysica acta,
Dmitriy Shevela, and Wolfgang P Schröder, and Johannes Messinger
May 1965, Biochimica et biophysica acta,
Dmitriy Shevela, and Wolfgang P Schröder, and Johannes Messinger
June 2010, Biotechnology and bioengineering,
Dmitriy Shevela, and Wolfgang P Schröder, and Johannes Messinger
July 2021, Nano letters,
Dmitriy Shevela, and Wolfgang P Schröder, and Johannes Messinger
December 1978, Biochimica et biophysica acta,
Dmitriy Shevela, and Wolfgang P Schröder, and Johannes Messinger
September 1955, Archives of biochemistry and biophysics,
Copied contents to your clipboard!