Effects of ozone on phospholipid synthesis by alveolar type II cells isolated from adult rat lung. 1985

H P Haagsman, and E A Schuurmans, and G M Alink, and J J Batenburg, and L M van Golde

Isolated alveolar type II cells were exposed to ozone by gas diffusion through the thin Teflon bottom of culture dishes. After exposure, type II cells were further incubated in the presence of labeled substrates to assess the capacity to synthesize surfactant lipids. The incorporation of [Me-14C]choline into both total and disaturated phosphatidylcholines in inhibited to 50% of the control values under conditions that result in a diffusion of 0.4 microgram O3/18 cm2-dish per 2.5 h. The incorporation rates of [1-14C]palmitate, [1-14C]acetate, D[U-14C]glucose, and [1,3-3H]glycerol into phosphatidylcholines are also lower after ozone exposure. Moreover, the synthesis of phosphatidylglycerols and phosphatidylethanolamines from these substrates is also inhibited by exposure of type II cells to ozone. These incorporation studies indicate that the effect of ozone is early in the biosynthetic pathway, probably at the step catalyzed by the enzyme glycerolphosphate acyltransferase. Determination of the activity of this enzyme after the ozone exposure shows that it is decreased, whereas the activity of lysophosphatidylcholine acyltransferase is increased. The activity of choline phosphotransferase also appears to be decreased after exposure of type II cells to ozone, although this enzyme was less susceptible than glycerolphosphate acyltransferase. Studies with the sulfhydryl reagent 5,5'-dithiobis (2-nitrobenzoic acid) indicate a positive correlation between the effect of this compound on enzyme activities in sonicated type II cells and the sensitivity of these enzymes in intact cells to ozone. This suggests that the effect of ozone on the synthesis of surfactant lipids is at least partially exerted via oxidation of the sulfhydryl groups of glycerolphosphate acyltransferase.

UI MeSH Term Description Entries
D008243 1-Acylglycerophosphocholine O-Acyltransferase An enzyme localized predominantly within the plasma membrane of lymphocytes. It catalyzes the transfer of long-chain fatty acids, preferentially unsaturated fatty acids, to lysophosphatides with the formation of 1,2-diacylglycero-3-phosphocholine and CoA. EC 2.3.1.23. 1-Acylglycerophosphocholine Acyltransferase,Acyl CoA Lysolecithin Acyltransferase,Lysolecithin Acyltransferase,Acyl-CoA-1-Acylglycero-3-Phosphocholine-O-Acyltransferase,Lysophosphatidylcholine Acyltransferase,Lysophosphatidylcholine-Palmitoyl CoA Acyltransferase,Lysophospholipid Acyltransferase,1 Acylglycerophosphocholine Acyltransferase,1 Acylglycerophosphocholine O Acyltransferase,Acyl CoA 1 Acylglycero 3 Phosphocholine O Acyltransferase,Acyltransferase, 1-Acylglycerophosphocholine,Acyltransferase, Lysolecithin,Acyltransferase, Lysophosphatidylcholine,Acyltransferase, Lysophosphatidylcholine-Palmitoyl CoA,Acyltransferase, Lysophospholipid,CoA Acyltransferase, Lysophosphatidylcholine-Palmitoyl,Lysophosphatidylcholine Palmitoyl CoA Acyltransferase,O-Acyltransferase, 1-Acylglycerophosphocholine
D010126 Ozone The unstable triatomic form of oxygen, O3. It is a powerful oxidant that is produced for various chemical and industrial uses. Its production is also catalyzed in the ATMOSPHERE by ULTRAVIOLET RAY irradiation of oxygen or other ozone precursors such as VOLATILE ORGANIC COMPOUNDS and NITROGEN OXIDES. About 90% of the ozone in the atmosphere exists in the stratosphere (STRATOSPHERIC OZONE). Ground Level Ozone,Low Level Ozone,Tropospheric Ozone,Level Ozone, Ground,Level Ozone, Low,Ozone, Ground Level,Ozone, Low Level,Ozone, Tropospheric
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D010714 Phosphatidylethanolamines Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to an ethanolamine moiety. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid and ethanolamine and 2 moles of fatty acids. Cephalin,Cephalins,Ethanolamine Phosphoglyceride,Ethanolamine Phosphoglycerides,Ethanolamineglycerophospholipids,Phosphoglyceride, Ethanolamine,Phosphoglycerides, Ethanolamine
D010715 Phosphatidylglycerols A nitrogen-free class of lipids present in animal and particularly plant tissues and composed of one mole of glycerol and 1 or 2 moles of phosphatidic acid. Members of this group differ from one another in the nature of the fatty acids released on hydrolysis. Glycerol Phosphoglycerides,Monophosphatidylglycerols,Phosphatidylglycerol,Phosphatidyl Glycerol,Glycerol, Phosphatidyl,Phosphoglycerides, Glycerol
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D011650 Pulmonary Alveoli Small polyhedral outpouchings along the walls of the alveolar sacs, alveolar ducts and terminal bronchioles through the walls of which gas exchange between alveolar air and pulmonary capillary blood takes place. Alveoli, Pulmonary,Alveolus, Pulmonary,Pulmonary Alveolus
D002798 Diacylglycerol Cholinephosphotransferase An enzyme that catalyzes the synthesis of phosphatidylcholines from CDPcholine and 1,2-diacylglycerols. EC 2.7.8.2. Cholinephosphotransferase,Phosphorylcholine-Glyceride Transferase,1-alkyl-2-Acetylglycerol Cholinephosphotransferase,CDP-Choline 1,2-Diglyceride Choline Phosphotransferase,CDP-Choline Cholinephosphotransferase,CDP-Diacylglycerol Synthase,Diacylglycerol-CDP Choline Phosphotransferase,PAF Phosphocholinetransferase,Phosphocholinetransferase,Phosphorylcholineglyceride Transferase,CDP Choline 1,2 Diglyceride Choline Phosphotransferase,CDP Choline Cholinephosphotransferase,CDP Diacylglycerol Synthase,Choline Phosphotransferase, Diacylglycerol-CDP,Cholinephosphotransferase, 1-alkyl-2-Acetylglycerol,Cholinephosphotransferase, CDP-Choline,Cholinephosphotransferase, Diacylglycerol,Diacylglycerol CDP Choline Phosphotransferase,Phosphocholinetransferase, PAF,Phosphorylcholine Glyceride Transferase,Phosphotransferase, Diacylglycerol-CDP Choline,Synthase, CDP-Diacylglycerol,Transferase, Phosphorylcholine-Glyceride,Transferase, Phosphorylcholineglyceride
D004228 Dithionitrobenzoic Acid A standard reagent for the determination of reactive sulfhydryl groups by absorbance measurements. It is used primarily for the determination of sulfhydryl and disulfide groups in proteins. The color produced is due to the formation of a thio anion, 3-carboxyl-4-nitrothiophenolate. 5,5'-Dithiobis(2-nitrobenzoic Acid),DTNB,Ellman's Reagent,5,5'-Dithiobis(nitrobenzoate),Acid, Dithionitrobenzoic,Ellman Reagent,Ellmans Reagent,Reagent, Ellman's
D005992 Glycerol-3-Phosphate O-Acyltransferase An enzyme that transfers acyl groups from acyl-CoA to glycerol-3-phosphate to form monoglyceride phosphates. It acts only with CoA derivatives of fatty acids of chain length above C-10. Also forms diglyceride phosphates. EC 2.3.1.15. Glycerolphosphate Acyltransferase,Stearyl-CoA Glycerophosphate Transstearylase,Acyl-CoA Sn-Glycerol-3-Phosphate-O-Acyltransferase,Glycerophosphate Acyltransferase,Acyl CoA Sn Glycerol 3 Phosphate O Acyltransferase,Acyltransferase, Glycerolphosphate,Acyltransferase, Glycerophosphate,Glycerol 3 Phosphate O Acyltransferase,Glycerophosphate Transstearylase, Stearyl-CoA,O-Acyltransferase, Glycerol-3-Phosphate,Sn-Glycerol-3-Phosphate-O-Acyltransferase, Acyl-CoA,Stearyl CoA Glycerophosphate Transstearylase,Transstearylase, Stearyl-CoA Glycerophosphate

Related Publications

H P Haagsman, and E A Schuurmans, and G M Alink, and J J Batenburg, and L M van Golde
November 1980, Biochimica et biophysica acta,
H P Haagsman, and E A Schuurmans, and G M Alink, and J J Batenburg, and L M van Golde
October 1982, FEBS letters,
H P Haagsman, and E A Schuurmans, and G M Alink, and J J Batenburg, and L M van Golde
January 1983, Biochimica et biophysica acta,
H P Haagsman, and E A Schuurmans, and G M Alink, and J J Batenburg, and L M van Golde
April 1989, Biochimica et biophysica acta,
H P Haagsman, and E A Schuurmans, and G M Alink, and J J Batenburg, and L M van Golde
February 1988, Biochimica et biophysica acta,
H P Haagsman, and E A Schuurmans, and G M Alink, and J J Batenburg, and L M van Golde
December 1983, The Biochemical journal,
H P Haagsman, and E A Schuurmans, and G M Alink, and J J Batenburg, and L M van Golde
October 1984, Biochimica et biophysica acta,
H P Haagsman, and E A Schuurmans, and G M Alink, and J J Batenburg, and L M van Golde
April 1978, Biochimica et biophysica acta,
H P Haagsman, and E A Schuurmans, and G M Alink, and J J Batenburg, and L M van Golde
May 1980, Biochimica et biophysica acta,
H P Haagsman, and E A Schuurmans, and G M Alink, and J J Batenburg, and L M van Golde
May 1983, Experimental lung research,
Copied contents to your clipboard!