The primary sequence of Ricinus communis agglutinin. Comparison with ricin. 1985

L M Roberts, and F I Lamb, and D J Pappin, and J M Lord

A mixture of synthetic oligonucleotides representing all possible sequences of a peptide present in the ricin B chain has been used to screen a cDNA library constructed using ripening castor bean seed poly(A+) RNA. The eight largest recombinant plasmids selected, by hybridization, a single mRNA species whose translational product was identified as preprolectin by immunoprecipitation. Restriction enzyme analysis of these clones demonstrated that two classes were present representing sequences complementary to two distinct but closely related preprolectin mRNA species. The nucleotide sequence of the cloned cDNA from one of these classes encodes preproricin and has been presented elsewhere (Lamb, F. I., Roberts, L. M., and Lord, J. M., (1985) Eur. J. Biochem. 148, 265-270). The nucleotide sequence of the second class is presented here and shown to represent prepro-Ricinus communis agglutinin. The entire coding sequence was deduced from two overlapping cDNA clones having inserts of 1668 and 1151 base pairs. The coding region defines a preproprotein with a 24-amino acid N-terminal signal sequence preceding the A chain (266 amino acids) which is joined to the B chain (262 amino acids) by a 12-amino acid linking peptide. The protein was confirmed as R. communis agglutinin since the deduced B chain N-terminal sequence corresponds exactly with that determined for purified R. communis agglutinin B chain over a region where several residue differences occur in the ricin B chain. The nucleotide and deduced amino acid sequences of the R. communis agglutinin precursor are compared with those of the ricin precursor.

UI MeSH Term Description Entries
D011498 Protein Precursors Precursors, Protein
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012276 Ricin A protein phytotoxin from the seeds of Ricinus communis, the castor oil plant. It agglutinates cells, is proteolytic, and causes lethal inflammation and hemorrhage if taken internally. Castor Bean Lectin,Lectin, Castor Bean,Lectin, Ricinus,Ricin Toxin,RCA 60,RCA60,Ricin A Chain,Ricin B Chain,Ricin D,Ricin I,Ricinus Toxin,A Chain, Ricin,B Chain, Ricin,Ricinus Lectin,Toxin, Ricin,Toxin, Ricinus
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular
D037102 Lectins Proteins that share the common characteristic of binding to carbohydrates. Some ANTIBODIES and carbohydrate-metabolizing proteins (ENZYMES) also bind to carbohydrates, however they are not considered lectins. PLANT LECTINS are carbohydrate-binding proteins that have been primarily identified by their hemagglutinating activity (HEMAGGLUTININS). However, a variety of lectins occur in animal species where they serve diverse array of functions through specific carbohydrate recognition. Animal Lectin,Animal Lectins,Isolectins,Lectin,Isolectin,Lectin, Animal,Lectins, Animal

Related Publications

L M Roberts, and F I Lamb, and D J Pappin, and J M Lord
May 1987, Plant molecular biology,
L M Roberts, and F I Lamb, and D J Pappin, and J M Lord
October 1978, Archives of biochemistry and biophysics,
L M Roberts, and F I Lamb, and D J Pappin, and J M Lord
January 1970, Taiwan yi xue hui za zhi. Journal of the Formosan Medical Association,
L M Roberts, and F I Lamb, and D J Pappin, and J M Lord
June 1998, European journal of biochemistry,
L M Roberts, and F I Lamb, and D J Pappin, and J M Lord
January 1985, European journal of biochemistry,
L M Roberts, and F I Lamb, and D J Pappin, and J M Lord
December 1983, European journal of biochemistry,
L M Roberts, and F I Lamb, and D J Pappin, and J M Lord
June 1982, Biochemical and biophysical research communications,
L M Roberts, and F I Lamb, and D J Pappin, and J M Lord
August 1978, Indian journal of biochemistry & biophysics,
L M Roberts, and F I Lamb, and D J Pappin, and J M Lord
January 1973, Comptes rendus des seances de la Societe de biologie et de ses filiales,
Copied contents to your clipboard!