Ricin and Ricinus communis agglutinin subunits are all derived from a single-size polypeptide precursor. 1983

A G Butterworth, and J M Lord

Antibodies have been raised in rabbits against the individually purified A and B subunits of the toxic castor bean lectin, ricin, and against the A' and B' subunits of Ricinus communis agglutinin type I. Each of the antisera recognised a single polypeptide species of Mr 60 500 when maturing castor bean endosperm mRNA was translated in vitro in a rabbit-reticulocyte-derived system. When dog pancreatic microsomal vesicles were included in the translational system, each subunit antiserum precipitated a group of 66 000-68 000-Mr core-glycosylated polypeptides which had been translocated into the lumen of the vesicles. The 60 500-Mr polypeptide appeared to be a common precursor to all four individual lectin subunits since (a) its glycosylated (66 000-68 000-Mr) forms were readily detected in the endoplasmic reticulum fraction isolated from maturing castor bean endosperm and (b) pulse-chase studies showed that the glycosylated precursors disappeared from the endoplasmic reticulum fraction with the concomittant appearance of authentic lectin subunits in a soluble protein fraction which included protein body matrix components. Antiserum prepared against whole R. communis agglutinin, type I, also precipitated the 65 000-Mr precursor in vitro and in vivo, but in addition precipitated a non-glycosylated 34 000-Mr polypeptide. This smaller protein is not a lectin subunit precursor, contradicting an earlier suggestion. It is most probably a precursor to the 2-S albumin storage proteins found in castor bean endosperm protein bodies.

UI MeSH Term Description Entries
D007120 Immunochemistry Field of chemistry that pertains to immunological phenomena and the study of chemical reactions related to antigen stimulation of tissues. It includes physicochemical interactions between antigens and antibodies.
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011232 Chemical Precipitation The formation of a solid in a solution as a result of a chemical reaction or the aggregation of soluble substances into complexes large enough to fall out of solution. Precipitation, Chemical
D011498 Protein Precursors Precursors, Protein
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D000118 Acetylglucosaminidase A beta-N-Acetylhexosaminidase that catalyzes the hydrolysis of terminal, non-reducing 2-acetamido-2-deoxy-beta-glucose residues in chitobiose and higher analogs as well as in glycoproteins. Has been used widely in structural studies on bacterial cell walls and in the study of diseases such as MUCOLIPIDOSIS and various inflammatory disorders of muscle and connective tissue. N-Acetyl-beta-D-glucosaminidase,Chitobiase,N,N-Diacetylchitobiase,N-Ac-beta-Glucosaminidase,NAGase,beta-D-Acetamido-2-Deoxyglucosidase,beta-D-N-acetylglucosaminidase,beta-N-Acetylglucosaminidase,N Ac beta Glucosaminidase,N Acetyl beta D glucosaminidase,N,N Diacetylchitobiase,beta D Acetamido 2 Deoxyglucosidase,beta D N acetylglucosaminidase,beta N Acetylglucosaminidase
D012276 Ricin A protein phytotoxin from the seeds of Ricinus communis, the castor oil plant. It agglutinates cells, is proteolytic, and causes lethal inflammation and hemorrhage if taken internally. Castor Bean Lectin,Lectin, Castor Bean,Lectin, Ricinus,Ricin Toxin,RCA 60,RCA60,Ricin A Chain,Ricin B Chain,Ricin D,Ricin I,Ricinus Toxin,A Chain, Ricin,B Chain, Ricin,Ricinus Lectin,Toxin, Ricin,Toxin, Ricinus
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations
D017038 Mannosyl-Glycoprotein Endo-beta-N-Acetylglucosaminidase A group of related enzymes responsible for the endohydrolysis of the di-N-acetylchitobiosyl unit in high-mannose-content glycopeptides and GLYCOPROTEINS. Di-N-Acetylchitobiosyl beta-N-Acetylglucosaminidase,Endo-beta-Acetylglucosaminidase,Endoglycosidase F,Endo D Endoglucosaminidase,Endo F Endoglucosaminidase,Endo H Endoglucosaminidase,Endo-N-Acetyl-beta-d-glucosaminidase,Endo-beta-N-Acetylglucosaminidase D,Endo-beta-N-Acetylglucosaminidase F,Endo-beta-N-Acetylglucosaminidase H,Endoglucosaminidase D,Endoglucosaminidase F,Endoglucosaminidase H,Endoglucosidase H,Endoglycosidase D,Endohexosaminidase F,Endohexosaminidase H,Peptide N-Glycosidase F,Di N Acetylchitobiosyl beta N Acetylglucosaminidase,Endo N Acetyl beta d glucosaminidase,Endo beta Acetylglucosaminidase,Endo beta N Acetylglucosaminidase D,Endo beta N Acetylglucosaminidase F,Endo beta N Acetylglucosaminidase H,Endo-beta-N-Acetylglucosaminidase, Mannosyl-Glycoprotein,Mannosyl Glycoprotein Endo beta N Acetylglucosaminidase,Peptide N Glycosidase F,beta-N-Acetylglucosaminidase, Di-N-Acetylchitobiosyl

Related Publications

A G Butterworth, and J M Lord
February 1973, Biochimica et biophysica acta,
A G Butterworth, and J M Lord
December 1985, The Journal of biological chemistry,
A G Butterworth, and J M Lord
January 1970, Taiwan yi xue hui za zhi. Journal of the Formosan Medical Association,
A G Butterworth, and J M Lord
June 1998, European journal of biochemistry,
A G Butterworth, and J M Lord
September 1973, FEBS letters,
A G Butterworth, and J M Lord
January 1978, Methods in enzymology,
A G Butterworth, and J M Lord
November 1985, Nucleic acids research,
A G Butterworth, and J M Lord
January 2010, Toxicon : official journal of the International Society on Toxinology,
Copied contents to your clipboard!