Role of Ni in coupling angiotensin receptors to inhibition of adenylate cyclase in hepatocytes. 1985

B F Pobiner, and E L Hewlett, and J C Garrison

Angiotensin II can inhibit glucagon-stimulated cyclic AMP production in hepatocytes and adenylate cyclase activity in hepatic membranes. Pertussis toxin, an exotoxin produced by Bordetella pertussis, was used to investigate the role of the inhibitory guanine nucleotide-binding regulatory protein of adenylate cyclase (Ni) in coupling angiotensin receptors to the adenylate cyclase system. An assay was developed using [32P] NAD+ to quantitate the amount of Ni protein in the membrane and the extent of its ADP-ribosylation catalyzed by toxin. The ability of angiotensin to inhibit adenylate cyclase and interact with its receptor was compared with the degree of modification of Ni in membranes prepared from isolated hepatocytes. In control membranes angiotensin II inhibited basal adenylate cyclase by 35%. When all of the Ni molecules in the membrane were ADP-ribosylated, angiotensin did not inhibit adenylate cyclase. However, the attenuation of angiotensin's effect on cyclase was not linearly correlated with the degree of modification of Ni; ADP-ribosylation of greater than 80% of the Ni was required before a reduction of the angiotensin effect was observed. A possible explanation for this finding is an excess of Ni molecules in the membrane (approximately 3.4 pmol/mg of membrane protein) over angiotensin II receptors (approximately 1.2 pmol/mg of membrane protein). 125I-angiotensin bound to sites in the membrane with two affinities. Computer fitting of the binding isotherms yielded parameters of N1 = 279 fmol/mg protein, Kd1 = 0.2 nM; N2 = 904 fmol/mg protein, Kd2 = 1.4 nM. When all of the Ni molecules in the membrane were ADP-ribosylated, angiotensin bound to only one site with binding parameters of N = 349 fmol/mg protein, Kd = 0.4 nM. GTP-gamma-S caused a 7-fold increase in the Kd of this site to 2.7 nM. Overall, the data indicate that the Ni protein mediates the effect of angiotensin on adenylate cyclase. The observation that GTP-gamma-S can markedly decrease the affinity of angiotensin receptors when all Ni molecules are ADP-ribosylated suggests that angiotensin receptors may couple to other GTP-binding proteins which may mediate the effects of angiotensin in other signal transduction systems.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D010566 Virulence Factors, Bordetella A set of BACTERIAL ADHESINS and TOXINS, BIOLOGICAL produced by BORDETELLA organisms that determine the pathogenesis of BORDETELLA INFECTIONS, such as WHOOPING COUGH. They include filamentous hemagglutinin; FIMBRIAE PROTEINS; pertactin; PERTUSSIS TOXIN; ADENYLATE CYCLASE TOXIN; dermonecrotic toxin; tracheal cytotoxin; Bordetella LIPOPOLYSACCHARIDES; and tracheal colonization factor. Bordetella Virulence Factors,Agglutinogen 2, Bordetella Pertussis,Bordetella Virulence Determinant,LFP-Hemagglutinin,LP-HA,Leukocytosis-Promoting Factor Hemagglutinin,Lymphocytosis-Promoting Factor-Hemagglutinin,Pertussis Agglutinins,Agglutinins, Pertussis,Determinant, Bordetella Virulence,Factor Hemagglutinin, Leukocytosis-Promoting,Factor-Hemagglutinin, Lymphocytosis-Promoting,Factors, Bordetella Virulence,Hemagglutinin, Leukocytosis-Promoting Factor,LFP Hemagglutinin,LP HA,Leukocytosis Promoting Factor Hemagglutinin,Lymphocytosis Promoting Factor Hemagglutinin,Virulence Determinant, Bordetella
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011945 Receptors, Angiotensin Cell surface proteins that bind ANGIOTENSINS and trigger intracellular changes influencing the behavior of cells. Angiotensin Receptor,Angiotensin Receptors,Angiotensin II Receptor,Angiotensin III Receptor,Receptor, Angiotensin II,Receptor, Angiotensin III,Receptor, Angiotensin
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D005934 Glucagon A 29-amino acid pancreatic peptide derived from proglucagon which is also the precursor of intestinal GLUCAGON-LIKE PEPTIDES. Glucagon is secreted by PANCREATIC ALPHA CELLS and plays an important role in regulation of BLOOD GLUCOSE concentration, ketone metabolism, and several other biochemical and physiological processes. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1511) Glucagon (1-29),Glukagon,HG-Factor,Hyperglycemic-Glycogenolytic Factor,Proglucagon (33-61),HG Factor,Hyperglycemic Glycogenolytic Factor
D000067956 Adenylyl Cyclase Inhibitors Compounds that bind to and inhibit the action of ADENYLYL CYCLASES. Adenylate Cyclase Inhibitors,Cyclase Inhibitors, Adenylate,Cyclase Inhibitors, Adenylyl,Inhibitors, Adenylate Cyclase,Inhibitors, Adenylyl Cyclase

Related Publications

B F Pobiner, and E L Hewlett, and J C Garrison
September 1978, Molecular pharmacology,
B F Pobiner, and E L Hewlett, and J C Garrison
May 1981, Journal of neurochemistry,
B F Pobiner, and E L Hewlett, and J C Garrison
January 1983, Journal of receptor research,
B F Pobiner, and E L Hewlett, and J C Garrison
April 1992, Molecular and cellular neurosciences,
B F Pobiner, and E L Hewlett, and J C Garrison
January 1977, Upsala journal of medical sciences,
B F Pobiner, and E L Hewlett, and J C Garrison
May 1993, Cellular signalling,
B F Pobiner, and E L Hewlett, and J C Garrison
December 1983, Biochemical and biophysical research communications,
B F Pobiner, and E L Hewlett, and J C Garrison
July 1986, Physiological reviews,
Copied contents to your clipboard!