Activation of chloroform and related trihalomethanes to free radical intermediates in isolated hepatocytes and in the rat in vivo as detected by the ESR-spin trapping technique. 1985

A Tomasi, and E Albano, and F Biasi, and T F Slater, and V Vannini, and M U Dianzani

When hepatocytes isolated from phenobarbital-induced rats were incubated with chloroform and the spin trap phenyl-t-butyl nitrone (PBN) under anaerobic conditions, a free radical-spin trap adduct was detectable by ESR spectroscopy. A similar incubation of hepatocytes in the presence of air resulted in an ESR signal that was eight times less intense than that seen under anaerobic conditions; incubation mixtures exposed to pure oxygen had no detectable adduct signal. A significant reduction in the signal intensity was also produced by the addition of cytochrome P-450 inhibitors such as SKF-525A, metyrapone and carbon monoxide, indicating that free radical formation depended upon the reductive metabolism of chloroform mediated by the mixed oxidase system. The origin of the CHCl3-derived free radical has been confirmed by using [13C]CHCl3, while the comparison between the ESR spectra obtained in the presence of deuterated chloroform (CDCl3) and bromodichloro-methane (CHBrCl2) suggests that the free radical derived from CHCl3 may be CHCl2. Free radical intermediates were also detected during the aerobic and anaerobic incubation of isolated hepatocytes with bromoform (CHBr3), and iodoform (CHI3). The intensity of the ESR signal obtained with the various trihalomethanes increases in the order CHCl3 less than CHBrCl2 less than CHBr3 less than CHI3. The formation of PBN-free radical adducts has also been observed in phenobarbital-induced rats in vivo when intoxicated with chloroform, bromoform or iodoform, suggesting that the reductive metabolism of trihalomethanes might be of relevance to their established toxicity in the whole animal.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D009589 Nitrogen Oxides Inorganic oxides that contain nitrogen. Nitrogen Oxide,Oxide, Nitrogen,Oxides, Nitrogen
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002725 Chloroform A commonly used laboratory solvent. It was previously used as an anesthetic, but was banned from use in the U.S. due to its suspected carcinogenicity. Trichloromethane
D003497 Cyclic N-Oxides Heterocyclic compounds in which an oxygen is attached to a cyclic nitrogen. Heterocyclic N-Oxides,Cyclic N Oxides,Heterocyclic N Oxides,N Oxides, Cyclic,N-Oxides, Cyclic,N-Oxides, Heterocyclic,Oxides, Cyclic N
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical

Related Publications

A Tomasi, and E Albano, and F Biasi, and T F Slater, and V Vannini, and M U Dianzani
April 2002, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy,
A Tomasi, and E Albano, and F Biasi, and T F Slater, and V Vannini, and M U Dianzani
January 1998, Free radical biology & medicine,
A Tomasi, and E Albano, and F Biasi, and T F Slater, and V Vannini, and M U Dianzani
November 2000, Chemical research in toxicology,
A Tomasi, and E Albano, and F Biasi, and T F Slater, and V Vannini, and M U Dianzani
January 1990, Archives of gerontology and geriatrics,
A Tomasi, and E Albano, and F Biasi, and T F Slater, and V Vannini, and M U Dianzani
July 1986, Photochemistry and photobiology,
A Tomasi, and E Albano, and F Biasi, and T F Slater, and V Vannini, and M U Dianzani
September 1995, The Journal of clinical investigation,
A Tomasi, and E Albano, and F Biasi, and T F Slater, and V Vannini, and M U Dianzani
June 1993, Archives of biochemistry and biophysics,
A Tomasi, and E Albano, and F Biasi, and T F Slater, and V Vannini, and M U Dianzani
March 1990, Nucleic acids research,
A Tomasi, and E Albano, and F Biasi, and T F Slater, and V Vannini, and M U Dianzani
November 2001, Proceedings of the National Academy of Sciences of the United States of America,
A Tomasi, and E Albano, and F Biasi, and T F Slater, and V Vannini, and M U Dianzani
May 2012, Free radical research,
Copied contents to your clipboard!