Abnormal neuronal excitability in hippocampal slices from kindled rats. 1985

G L King, and R Dingledine, and J L Giacchino, and J O McNamara

To determine if electrophysiological properties of hippocampal pathways are altered in kindled rats, extracellular recordings were made from hippocampal slices of rats kindled in the lateral entorhinal cortex and compared with those from implanted but unstimulated controls. Studies were made either 24 h or 28 days after the last kindled seizure and done in normal (3.5 mM) or elevated (7 mM) K+. The preparation of slices, data accumulation, and data analyses were done blind. One day or 28 days after the last kindled seizure, the proportion of slices with spontaneous epileptiform bursts recorded from the CA2/3 region in elevated K+ was significantly (P less than 0.001) increased in the kindled animals. The frequency of spontaneous burst firing was also increased and reached significance (P less than 0.02) at 28 days following the last kindling stimulus. One day after the last kindling stimulus, paired-pulse (GABAergic) inhibition in the CA1 region was decreased (P less than 0.001). Several measures suggested an increased synaptic inhibition in the dentate gyrus of slices from the kindled groups 1 day after kindling. Paired-pulse inhibition was increased (P less than 0.01), the current required to evoke a near-threshold population spike was increased (P less than 0.05), and the population spike amplitude was reduced for a given field excitatory postsynaptic potential (EPSP) (P less than 0.01). Twenty-eight days after the last kindling stimulus, however, paired-pulse inhibition in the dentate was slightly less in slices from kindled rats (P less than 0.005). In other respects the CA1 and dentate regions did not differ between kindled and control groups within 24 h of the last stage V seizure. Thus the maximum amplitudes of presynaptic fiber volley, population spike, and field-excitatory postsynaptic potential (EPSP) slope, and the number of population spikes evoked by a near-maximally effective afferent stimulus, were unchanged. In the CA1 region the input-output curve of field EPSP versus population spike, and the current intensity required to evoke a near-threshold population spike were also unchanged. In addition, no spontaneous bursts were recorded from CA1 in 3.5 mM K+. We conclude that either synapses or neurons intrinsic to the hippocampus are altered by kindling stimuli applied outside this brain area. The transient increase in inhibition in the dentate gyrus suggests that it may reflect a compensatory reaction to kindled seizures. In contrast, the long-lasting (at least 28 days) increase in burst firing in CA2/3 may represent a mechanism for the initiation or propagation of kindled seizures.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007696 Kindling, Neurologic The repeated weak excitation of brain structures, that progressively increases sensitivity to the same stimulation. Over time, this can lower the threshold required to trigger seizures. Kindlings, Neurologic,Neurologic Kindling,Neurologic Kindlings
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

G L King, and R Dingledine, and J L Giacchino, and J O McNamara
June 1988, Brain research,
G L King, and R Dingledine, and J L Giacchino, and J O McNamara
April 2000, Brain research,
G L King, and R Dingledine, and J L Giacchino, and J O McNamara
October 2021, Neuropeptides,
G L King, and R Dingledine, and J L Giacchino, and J O McNamara
January 1985, Experimental brain research,
G L King, and R Dingledine, and J L Giacchino, and J O McNamara
August 2018, Pflugers Archiv : European journal of physiology,
G L King, and R Dingledine, and J L Giacchino, and J O McNamara
July 1995, European journal of pharmacology,
G L King, and R Dingledine, and J L Giacchino, and J O McNamara
December 1987, Radiation research,
G L King, and R Dingledine, and J L Giacchino, and J O McNamara
January 1992, Neuroscience,
G L King, and R Dingledine, and J L Giacchino, and J O McNamara
March 1991, Epilepsy research,
G L King, and R Dingledine, and J L Giacchino, and J O McNamara
September 1992, Hua xi yi ke da xue xue bao = Journal of West China University of Medical Sciences = Huaxi yike daxue xuebao,
Copied contents to your clipboard!