Na-H exchange in rat liver basolateral but not canalicular plasma membrane vesicles. 1986

R H Moseley, and P J Meier, and P S Aronson, and J L Boyer

Na+-stimulated H+ movement and H+-stimulated Na+ uptake were studied in basolateral (blLPM) and canalicular (cLPM) rat liver membrane vesicles. H+ movement was monitored with the fluorescent amine acridine orange; 22Na uptake was assayed by a rapid Millipore filtration technique. In blLPM, inwardly directed Na+ gradients stimulated H+ efflux and outwardly directed Na+ gradients stimulated proton influx. Outwardly directed proton gradients (pH in 5.9/pH out 7.9) stimulated initial 22Na uptake rates 5- to 10-fold over pH-equilibrated conditions (pH in 7.9/pH out 7.9). Conversely, inwardly directed proton gradients (pH in 7.9/pH out 5.9) inhibited 22Na uptake. pH-dependent 22Na uptake was inhibited by amiloride and harmaline but not by other transport inhibitors, bumetanide, furosemide, 4,4'-diisothiocyano-2,2'-disulfonic acid stilbene, 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid, and acetazolamide. Lithium also inhibited H+-stimulated 22Na uptake. Although a component of pH-stimulated 22Na uptake appeared to be dependent on membrane potential, this electrogenic component was amiloride insensitive. Proton gradient-stimulated 22Na uptake in blLPM was saturable, with a Km of 5.4 mM and a Vmax of 14 nmol . min-1 . mg prot-1. In contrast, in cLPM, no Na+ gradient-stimulated proton movement and no pH-dependent Na+ uptake occurred. These findings establish an electroneutral Na-H antiport in blLPM but not cLPM in rat liver. The polarity of this exchanger supports a model of bile formation that is dependent, in part, on canalicular HCO-3 and/or OH- excretion.

UI MeSH Term Description Entries
D008094 Lithium An element in the alkali metals family. It has the atomic symbol Li, atomic number 3, and atomic weight [6.938; 6.997]. Salts of lithium are used in treating BIPOLAR DISORDER. Lithium-7,Lithium 7
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D005374 Filtration A process of separating particulate matter from a fluid, such as air or a liquid, by passing the fluid carrier through a medium that will not pass the particulates. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Filtrations

Related Publications

R H Moseley, and P J Meier, and P S Aronson, and J L Boyer
September 1987, The Journal of clinical investigation,
R H Moseley, and P J Meier, and P S Aronson, and J L Boyer
September 1990, The American journal of physiology,
R H Moseley, and P J Meier, and P S Aronson, and J L Boyer
June 1988, The Journal of membrane biology,
R H Moseley, and P J Meier, and P S Aronson, and J L Boyer
October 1987, The American journal of physiology,
R H Moseley, and P J Meier, and P S Aronson, and J L Boyer
August 1988, The American journal of physiology,
R H Moseley, and P J Meier, and P S Aronson, and J L Boyer
November 1986, The American journal of physiology,
R H Moseley, and P J Meier, and P S Aronson, and J L Boyer
October 1989, The American journal of physiology,
R H Moseley, and P J Meier, and P S Aronson, and J L Boyer
September 1990, Hepatology (Baltimore, Md.),
R H Moseley, and P J Meier, and P S Aronson, and J L Boyer
July 1989, The Journal of pharmacology and experimental therapeutics,
R H Moseley, and P J Meier, and P S Aronson, and J L Boyer
July 1996, Hepatology (Baltimore, Md.),
Copied contents to your clipboard!