Ursodeoxycholate stimulates Na+-H+ exchange in rat liver basolateral plasma membrane vesicles. 1987

R H Moseley, and N Ballatori, and D J Smith, and J L Boyer

Na+:H+ and Cl-:HCO3- exchange are localized, respectively, to basolateral (blLPM) and canalicular (cLPM) rat liver plasma membranes. To determine whether these exchangers play a role in bile formation, we examined the effect of a choleretic agent, ursodeoxycholate (UDCA), on these exchange mechanisms. 22Na (1 mM) and 36Cl (5 mM) uptake was determined using outwardly directed H+ and HCO3- gradients, respectively. Preincubation of blLPM vesicles with UDCA (0-500 microM) resulted in a concentration-dependent increase in initial rates of amiloride-sensitive pH-driven Na+ uptake, with a maximal effect at 200 microM. UDCA (200 microM) increased Vmax from 23 +/- 2 (control) to 37 +/- 7 nmol/min per mg protein; apparent Km for Na+ was unchanged. Preincubation with tauroursodeoxycholate (200 microM), taurocholate (10-200 microM) or cholate, chenodeoxycholate, or deoxycholate (200 microM) had no effect on pH-driven Na+ uptake. UDCA (200 microM) had no effect on either membrane lipid fluidity, assessed by steady-state fluorescence polarization using the probes 1,6-diphenyl-1,3,5-hexatriene, 12-(9-anthroyloxy) stearic acid, and 2-(9-anthroyloxy) stearic acid (2-AS), or Na+,K+-ATPase activity in blLPM vesicles. In cLPM vesicles, UDCA (0-500 microM) had no stimulatory effect on initial rates of HCO3(-)-driven Cl- uptake. Enhanced basolateral Na+:H+ exchange activity, leading to intracellular HCO3- concentrations above equilibrium, may account for the bicarbonate-rich choleresis after UDCA infusion.

UI MeSH Term Description Entries
D007474 Ion Exchange Reversible chemical reaction between a solid, often one of the ION EXCHANGE RESINS, and a fluid whereby ions may be exchanged from one substance to another. This technique is used in water purification, in research, and in industry. Exchange, Ion
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D003840 Deoxycholic Acid A bile acid formed by bacterial action from cholate. It is usually conjugated with glycine or taurine. Deoxycholic acid acts as a detergent to solubilize fats for intestinal absorption, is reabsorbed itself, and is used as a choleretic and detergent. Deoxycholate,Desoxycholic Acid,Kybella,Choleic Acid,Deoxycholic Acid, 12beta-Isomer,Deoxycholic Acid, 3beta-Isomer,Deoxycholic Acid, 5alpha-Isomer,Deoxycholic Acid, Disodium Salt,Deoxycholic Acid, Magnesium (2:1) Salt,Deoxycholic Acid, Monoammonium Salt,Deoxycholic Acid, Monopotassium Salt,Deoxycholic Acid, Monosodium Salt,Deoxycholic Acid, Sodium Salt, 12beta-Isomer,Dihydroxycholanoic Acid,Lagodeoxycholic Acid,Sodium Deoxycholate,12beta-Isomer Deoxycholic Acid,3beta-Isomer Deoxycholic Acid,5alpha-Isomer Deoxycholic Acid,Deoxycholate, Sodium,Deoxycholic Acid, 12beta Isomer,Deoxycholic Acid, 3beta Isomer,Deoxycholic Acid, 5alpha Isomer
D006859 Hydrogen The first chemical element in the periodic table with atomic symbol H, and atomic number 1. Protium (atomic weight 1) is by far the most common hydrogen isotope. Hydrogen also exists as the stable isotope DEUTERIUM (atomic weight 2) and the radioactive isotope TRITIUM (atomic weight 3). Hydrogen forms into a diatomic molecule at room temperature and appears as a highly flammable colorless and odorless gas. Protium,Hydrogen-1
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R H Moseley, and N Ballatori, and D J Smith, and J L Boyer
September 1990, The American journal of physiology,
R H Moseley, and N Ballatori, and D J Smith, and J L Boyer
January 1986, The American journal of physiology,
R H Moseley, and N Ballatori, and D J Smith, and J L Boyer
June 1988, The Journal of membrane biology,
R H Moseley, and N Ballatori, and D J Smith, and J L Boyer
November 1986, The American journal of physiology,
R H Moseley, and N Ballatori, and D J Smith, and J L Boyer
October 1989, The American journal of physiology,
R H Moseley, and N Ballatori, and D J Smith, and J L Boyer
July 1989, The Journal of pharmacology and experimental therapeutics,
R H Moseley, and N Ballatori, and D J Smith, and J L Boyer
July 1996, Hepatology (Baltimore, Md.),
R H Moseley, and N Ballatori, and D J Smith, and J L Boyer
March 1991, Journal of developmental physiology,
R H Moseley, and N Ballatori, and D J Smith, and J L Boyer
June 1986, The American journal of physiology,
R H Moseley, and N Ballatori, and D J Smith, and J L Boyer
September 1992, Gastroenterology,
Copied contents to your clipboard!