Synthesis of infectious poliovirus RNA by purified T7 RNA polymerase. 1986

S van der Werf, and J Bradley, and E Wimmer, and F W Studier, and J J Dunn

Plasmids containing the entire cDNA sequence of poliovirus type 1 (Mahoney strain) under control of a promoter for T7 RNA polymerase have been constructed. Purified T7 RNA polymerase efficiently transcribes the entire poliovirus cDNA in either direction to produce full-length poliovirus RNA [(+)RNA] or its complement [(-)RNA]. The (+)RNA produced initially had 60 nucleotides on the 5' side of the poliovirus RNA sequence, including a string of 18 consecutive guanine residues generated in the original cloning and an additional 626 nucleotides of pBR322 sequence beyond the poly(A) tract at the 3' end. Such RNA, while much more infectious than the plasmid DNA, is only about 0.1% as infectious as RNA isolated from the virus. Subsequently, a T7 promoter was placed only 2 base pairs ahead of the poliovirus sequence, so that T7 RNA polymerase synthesizes poliovirus RNA with only 2 additional guanine residues at the 5' end and no more than seven nucleotides past the poly(A) tract at the 3' end. Such RNA has much higher specific infectivity, about 5% that of RNA isolated from the virus. The ability to make infectious poliovirus RNA efficiently from cloned DNA makes it possible to apply techniques of in vitro mutagenesis to the analysis of poliovirus functions and the construction of novel and perhaps useful derivatives of poliovirus. A source of variant RNAs should also allow detailed study of the synthesis and processing of poliovirus proteins in vitro.

UI MeSH Term Description Entries
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D012321 DNA-Directed RNA Polymerases Enzymes that catalyze DNA template-directed extension of the 3'-end of an RNA strand one nucleotide at a time. They can initiate a chain de novo. In eukaryotes, three forms of the enzyme have been distinguished on the basis of sensitivity to alpha-amanitin, and the type of RNA synthesized. (From Enzyme Nomenclature, 1992). DNA-Dependent RNA Polymerases,RNA Polymerases,Transcriptases,DNA-Directed RNA Polymerase,RNA Polymerase,Transcriptase,DNA Dependent RNA Polymerases,DNA Directed RNA Polymerase,DNA Directed RNA Polymerases,Polymerase, DNA-Directed RNA,Polymerase, RNA,Polymerases, DNA-Dependent RNA,Polymerases, DNA-Directed RNA,Polymerases, RNA,RNA Polymerase, DNA-Directed,RNA Polymerases, DNA-Dependent,RNA Polymerases, DNA-Directed
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D013604 T-Phages A series of 7 virulent phages which infect E. coli. The T-even phages T2, T4; (BACTERIOPHAGE T4), and T6, and the phage T5 are called "autonomously virulent" because they cause cessation of all bacterial metabolism on infection. Phages T1, T3; (BACTERIOPHAGE T3), and T7; (BACTERIOPHAGE T7) are called "dependent virulent" because they depend on continued bacterial metabolism during the lytic cycle. The T-even phages contain 5-hydroxymethylcytosine in place of ordinary cytosine in their DNA. Bacteriophages T,Coliphages T,Phages T,T Phages,T-Phage
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D014779 Virus Replication The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle. Viral Replication,Replication, Viral,Replication, Virus,Replications, Viral,Replications, Virus,Viral Replications,Virus Replications
D017955 Poliovirus A species of ENTEROVIRUS which is the causal agent of POLIOMYELITIS in humans. Three serotypes (strains) exist. Transmission is by the fecal-oral route, pharyngeal secretions, or mechanical vector (flies). Vaccines with both inactivated and live attenuated virus have proven effective in immunizing against the infection. Brunhilde Virus,Human poliovirus 1,Human poliovirus 2,Human poliovirus 3,Lansing Virus,Leon Virus,Poliovirus Type 1,Poliovirus Type 2,Poliovirus Type 3,Polioviruses

Related Publications

S van der Werf, and J Bradley, and E Wimmer, and F W Studier, and J J Dunn
May 1998, Nature,
S van der Werf, and J Bradley, and E Wimmer, and F W Studier, and J J Dunn
July 1994, Proceedings of the National Academy of Sciences of the United States of America,
S van der Werf, and J Bradley, and E Wimmer, and F W Studier, and J J Dunn
October 1975, Journal of molecular biology,
S van der Werf, and J Bradley, and E Wimmer, and F W Studier, and J J Dunn
January 2004, Molekuliarnaia biologiia,
S van der Werf, and J Bradley, and E Wimmer, and F W Studier, and J J Dunn
July 1973, Biochimica et biophysica acta,
S van der Werf, and J Bradley, and E Wimmer, and F W Studier, and J J Dunn
January 2006, Methods in molecular biology (Clifton, N.J.),
S van der Werf, and J Bradley, and E Wimmer, and F W Studier, and J J Dunn
November 1973, Virology,
S van der Werf, and J Bradley, and E Wimmer, and F W Studier, and J J Dunn
March 1964, Proceedings of the National Academy of Sciences of the United States of America,
S van der Werf, and J Bradley, and E Wimmer, and F W Studier, and J J Dunn
November 1998, FEBS letters,
S van der Werf, and J Bradley, and E Wimmer, and F W Studier, and J J Dunn
April 1987, Cell,
Copied contents to your clipboard!