Protein-primed RNA synthesis by purified poliovirus RNA polymerase. 1998

A V Paul, and J H van Boom, and D Filippov, and E Wimmer
Department of Molecular Genetics and Microbiology, School of Medicine, Health Science Center, State University of New York, Stony Brook 11794-5222, USA. apaul@asterix.bio.sunysb.edu

A small protein, VPg, is covalently linked to the 5' end of the plus-stranded poliovirus genomic RNA. Poliovirus messenger RNA, identical in nucleotide sequence to genomic RNA, is not capped at its 5' end by the methylated structure that is common to most eukaryotic mRNAs. These discoveries presented two problems. First, as cap structures are usually required for translation of mRNA into protein, how does this uncapped viral RNA act as a template for translation? Second, what is the function of VPg? The identification of the internal ribosomal-entry site, which allows the entry of ribosomes into viral mRNA independently of the 5' mRNA end, has solved the first conundrum. Here we describe the resolution of the second problem. VPg is linked to the genomic RNA through the 5'-terminal uridylic acid of the RNA. We show that VPg can be uridylylated by the poliovirus RNA polymerase 3Dpol. Uridylylated VPg can then prime the transcription of polyadenylate RNA by 3Dpol to produce VPg-linked poly(U). Initiation of transcription of the poliovirus genome from the polyadenylated 3' end therefore depends on VPg.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011061 Poly A A group of adenine ribonucleotides in which the phosphate residues of each adenine ribonucleotide act as bridges in forming diester linkages between the ribose moieties. Adenine Polynucleotides,Polyadenylic Acids,Poly(rA),Polynucleotides, Adenine
D011072 Poly U A group of uridine ribonucleotides in which the phosphate residues of each uridine ribonucleotide act as bridges in forming diester linkages between the ribose moieties. Polyuridylic Acids,Uracil Polynucleotides,Poly(rU),Acids, Polyuridylic,Polynucleotides, Uracil
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D012321 DNA-Directed RNA Polymerases Enzymes that catalyze DNA template-directed extension of the 3'-end of an RNA strand one nucleotide at a time. They can initiate a chain de novo. In eukaryotes, three forms of the enzyme have been distinguished on the basis of sensitivity to alpha-amanitin, and the type of RNA synthesized. (From Enzyme Nomenclature, 1992). DNA-Dependent RNA Polymerases,RNA Polymerases,Transcriptases,DNA-Directed RNA Polymerase,RNA Polymerase,Transcriptase,DNA Dependent RNA Polymerases,DNA Directed RNA Polymerase,DNA Directed RNA Polymerases,Polymerase, DNA-Directed RNA,Polymerase, RNA,Polymerases, DNA-Dependent RNA,Polymerases, DNA-Directed RNA,Polymerases, RNA,RNA Polymerase, DNA-Directed,RNA Polymerases, DNA-Dependent,RNA Polymerases, DNA-Directed
D012324 RNA-Dependent RNA Polymerase An enzyme that catalyses RNA-template-directed extension of the 3'- end of an RNA strand by one nucleotide at a time, and can initiate a chain de novo. (Enzyme Nomenclature, 1992, p293) Nucleoside-Triphosphate:RNA Nucleotidyltransferase (RNA-directed),RNA Replicase,RNA-Dependent RNA Replicase,RNA-Directed RNA Polymerase,RNA Dependent RNA Polymerase,RNA Dependent RNA Replicase,RNA Directed RNA Polymerase,RNA Polymerase, RNA-Dependent,RNA Polymerase, RNA-Directed,RNA Replicase, RNA-Dependent,Replicase, RNA,Replicase, RNA-Dependent RNA
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

A V Paul, and J H van Boom, and D Filippov, and E Wimmer
April 1986, Proceedings of the National Academy of Sciences of the United States of America,
A V Paul, and J H van Boom, and D Filippov, and E Wimmer
November 2003, The Journal of biological chemistry,
A V Paul, and J H van Boom, and D Filippov, and E Wimmer
November 1994, The Journal of biological chemistry,
A V Paul, and J H van Boom, and D Filippov, and E Wimmer
November 1973, Virology,
A V Paul, and J H van Boom, and D Filippov, and E Wimmer
July 2001, Nucleic acids research,
A V Paul, and J H van Boom, and D Filippov, and E Wimmer
March 1964, Proceedings of the National Academy of Sciences of the United States of America,
A V Paul, and J H van Boom, and D Filippov, and E Wimmer
May 1969, Proceedings of the National Academy of Sciences of the United States of America,
A V Paul, and J H van Boom, and D Filippov, and E Wimmer
October 1963, Virology,
A V Paul, and J H van Boom, and D Filippov, and E Wimmer
February 1975, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!