Human glucose-6-phosphate dehydrogenase: primary structure and cDNA cloning. 1986

T Takizawa, and I Y Huang, and T Ikuta, and A Yoshida

The X-chromosome-linked glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate:NADP+ oxidoreductase, EC 1.1.1.49) of humans and other mammals consists of a subunit with a molecular weight of about 58,000. The enzyme plays a key role in the generation of NADPH, particularly in matured erythrocytes, and the genetic deficiency of the enzyme is associated with chronic and drug- or food-induced hemolytic anemia in humans. The enzyme was purified to homogeneity from human erythrocytes. The complete amino acid sequence of the subunit, consisting of 531 amino acid residues, was determined by automated and manual Edman degradation of tryptic, chymotryptic, thermolytic, and cyanogen bromide peptides obtained from the enzyme. Based on the amino acid sequence data thus obtained, a 41-mer oligonucleotide with unique sequence was prepared. Two cDNA libraries constructed in phage lambda gt11--i.e., a human liver cDNA library and a human hepatoma Li-7 cDNA library--were screened with the synthetic nucleotide probe. Two positive clones, lambda G6PD-19 and lambda G6PD-25, were obtained from the hepatoma library. lambda G6PD-19 contained an insertion of 2.0 kilobase pairs (kbp), and encoded 204 amino acid residues that were completely compatible with the COOH-terminal portion of the enzyme. The insertion of the clone had a 3' noncoding region of 1.36 kbp. The other clone, lambda G6PD-25, had an insertion of 1.8 kbp and encoded 362 amino acid residues of G6PD. Southern blot analysis of DNA samples obtained from cells with and without the human X chromosome indicated that the cDNA hybridizes with a sequence in the X chromosome.

UI MeSH Term Description Entries
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D005954 Glucosephosphate Dehydrogenase Glucose-6-Phosphate Dehydrogenase,Dehydrogenase, Glucose-6-Phosphate,Dehydrogenase, Glucosephosphate,Glucose 6 Phosphate Dehydrogenase
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014960 X Chromosome The female sex chromosome, being the differential sex chromosome carried by half the male gametes and all female gametes in human and other male-heterogametic species. Chromosome, X,Chromosomes, X,X Chromosomes

Related Publications

T Takizawa, and I Y Huang, and T Ikuta, and A Yoshida
September 1994, Biochimica et biophysica acta,
T Takizawa, and I Y Huang, and T Ikuta, and A Yoshida
August 1988, Nucleic acids research,
T Takizawa, and I Y Huang, and T Ikuta, and A Yoshida
June 1988, Proceedings of the National Academy of Sciences of the United States of America,
T Takizawa, and I Y Huang, and T Ikuta, and A Yoshida
January 1993, DNA sequence : the journal of DNA sequencing and mapping,
T Takizawa, and I Y Huang, and T Ikuta, and A Yoshida
December 1981, Nature,
T Takizawa, and I Y Huang, and T Ikuta, and A Yoshida
January 2002, Yi chuan xue bao = Acta genetica Sinica,
T Takizawa, and I Y Huang, and T Ikuta, and A Yoshida
April 1993, DNA and cell biology,
T Takizawa, and I Y Huang, and T Ikuta, and A Yoshida
January 1971, Bulletin of the World Health Organization,
T Takizawa, and I Y Huang, and T Ikuta, and A Yoshida
June 2012, Protein expression and purification,
Copied contents to your clipboard!