Chronic caffeine treatment reduces caffeine but not adenosine effects on cortical acetylcholine release. 1986

R Corradetti, and F Pedata, and G Pepeu, and M G Vannucchi

The effects of both adenosine and caffeine on the release of acetylcholine (ACh) were investigated in slices of cerebral cortex taken from rats pretreated for 30 days with caffeine (100 mg kg-1 daily, dissolved in their drinking water) at rest and during electrical stimulation at frequencies of 0.2, 1 and 5 Hz. The effect of this treatment on adenosine binding sites was also investigated in cortical membranes using N-cyclohexyl-[3H]-adenosine ([3H]-CHA) as a ligand. The chronic caffeine treatment did not change animal growth patterns. Spontaneous exploratory activity appeared to be increased at the 3rd day but was unchanged at the 30th day when compared with controls. Caffeine-treatment increased the number of high affinity binding sites for [3H]-CHA by 64% over the control values. Low affinity binding site density and affinity constants were unaffected. Adenosine 30 microM added to the superfusion fluid decreased electrically stimulated ACh release both in rats drinking tap water and rats drinking caffeine. In rats drinking tap water, caffeine added to the superfusion fluid at a concentration of 50 microM enhanced ACh release, while at 0.5 mM it decreased ACh output from the slices. Both effects were abolished by pretreatment with caffeine in vivo. The results indicate that prolonged consumption of high doses of caffeine causes changes in the responsiveness of cholinergic neurones to caffeine. The change is not shared by adenosine, through whose recognition sites caffeine is believed to act. It is therefore possible that the adaptive changes following repeated caffeine administration involve either only the coupler-transducer mechanism activated by the antagonist, or effects unrelated to receptors.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D011983 Receptors, Purinergic Cell surface proteins that bind PURINES with high affinity and trigger intracellular changes which influence the behavior of cells. The best characterized classes of purinergic receptors in mammals are the P1 receptors, which prefer ADENOSINE, and the P2 receptors, which prefer ATP or ADP. Methyladenine Receptors,Purine Receptors,Purinergic Receptor,Purinergic Receptors,Purinoceptors,Purine Receptor,Purinoceptor,Receptors, Methyladenine,Receptors, Purine,Receptor, Purine,Receptor, Purinergic
D001835 Body Weight The mass or quantity of heaviness of an individual. It is expressed by units of pounds or kilograms. Body Weights,Weight, Body,Weights, Body
D002110 Caffeine A methylxanthine naturally occurring in some beverages and also used as a pharmacological agent. Caffeine's most notable pharmacological effect is as a central nervous system stimulant, increasing alertness and producing agitation. It also relaxes SMOOTH MUSCLE, stimulates CARDIAC MUSCLE, stimulates DIURESIS, and appears to be useful in the treatment of some types of headache. Several cellular actions of caffeine have been observed, but it is not entirely clear how each contributes to its pharmacological profile. Among the most important are inhibition of cyclic nucleotide PHOSPHODIESTERASES, antagonism of ADENOSINE RECEPTORS, and modulation of intracellular calcium handling. 1,3,7-Trimethylxanthine,Caffedrine,Coffeinum N,Coffeinum Purrum,Dexitac,Durvitan,No Doz,Percoffedrinol N,Percutaféine,Quick-Pep,Vivarin,Quick Pep,QuickPep
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005106 Exploratory Behavior The tendency to explore or investigate a novel environment. It is considered a motivation not clearly distinguishable from curiosity. Curiosity,Novelty-Seeking Behavior,Behavior, Exploratory,Behavior, Novelty-Seeking,Behaviors, Exploratory,Behaviors, Novelty-Seeking,Curiosities,Exploratory Behaviors,Novelty Seeking Behavior,Novelty-Seeking Behaviors

Related Publications

R Corradetti, and F Pedata, and G Pepeu, and M G Vannucchi
August 1990, Brain research,
R Corradetti, and F Pedata, and G Pepeu, and M G Vannucchi
January 1994, Archives internationales de pharmacodynamie et de therapie,
R Corradetti, and F Pedata, and G Pepeu, and M G Vannucchi
January 2007, European journal of pharmacology,
R Corradetti, and F Pedata, and G Pepeu, and M G Vannucchi
June 2001, The European journal of neuroscience,
R Corradetti, and F Pedata, and G Pepeu, and M G Vannucchi
January 1983, Nature,
R Corradetti, and F Pedata, and G Pepeu, and M G Vannucchi
January 1984, Annali dell'Istituto superiore di sanita,
R Corradetti, and F Pedata, and G Pepeu, and M G Vannucchi
December 1979, Brain research,
R Corradetti, and F Pedata, and G Pepeu, and M G Vannucchi
February 2008, Neuroscience,
R Corradetti, and F Pedata, and G Pepeu, and M G Vannucchi
January 1997, Naunyn-Schmiedeberg's archives of pharmacology,
Copied contents to your clipboard!