Effects of chronic caffeine on adenosine, dopamine and acetylcholine systems in mice. 1994

D Shi, and O Nikodijević, and K A Jacobson, and J W Daly
Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA.

Chronic ingestion of caffeine by male NIH Swiss strain mice leads in about 3 days to a significant increase in A1-adenosine, nicotinic and muscarinic receptors, and a significant decrease of beta 1-adrenoceptors in cerebral cortical membranes. Plasma levels of caffeine in the chronically treated mice range from 0.70 to 5.7 micrograms/ml. The changes in receptors reverse after withdrawal of caffeine within 7 days. An increase in nitrendipine binding sites, associated with L-type calcium channels, also occurs within 4 days and has reversed in 7 days after withdrawal. There is no change in the levels of striatal nicotinic receptors of D2-dopamine receptors, nor of [3H]cocaine binding to dopamine uptake sites. Levels of opioid receptors are either increased (delta) or unaltered (mu, kappa). sigma-Receptors are unaltered. Stimulations of striatal adenylate cyclase by forskolin, dopamine and NECA are not significantly affected after chronic caffeine ingestion. The adenosine agonist, NECA, reverses the amphetamine-elicited increases in locomotor activity and partly reverses the cocaine-elicited increases. The NECA dose-response curve is multiphasic (depression, stimulation and then depression) versus amphetamine in control mice, but only depressant versus amphetamine in chronic caffeine mice, while being multiphasic versus cocaine in both control and chronic caffeine mice. NECA reverses the stimulation of locomotor activity elicited by the muscarinic antagonist, scopolamine, and is more effective in the chronic caffeine mice. The behavioral depressant effects of the muscarinic agonist, oxotremorine, are not markedly altered after chronic caffeine ingestion.

UI MeSH Term Description Entries
D008297 Male Males
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D009538 Nicotine Nicotine is highly toxic alkaloid. It is the prototypical agonist at nicotinic cholinergic receptors where it dramatically stimulates neurons and ultimately blocks synaptic transmission. Nicotine is also important medically because of its presence in tobacco smoke. Nicotine Bitartrate,Nicotine Tartrate
D009568 Nitrendipine A calcium channel blocker with marked vasodilator action. It is an effective antihypertensive agent and differs from other calcium channel blockers in that it does not reduce glomerular filtration rate and is mildly natriuretic, rather than sodium retentive. Balminil,Bay e 5009,Bayotensin,Baypresol,Baypress,Gericin,Jutapress,Nidrel,Niprina,Nitre AbZ,Nitre-Puren,Nitregamma,Nitren 1A Pharma,Nitren Lich,Nitren acis,Nitrend KSK,Nitrendepat,Nitrendi Biochemie,Nitrendidoc,Nitrendimerck,Nitrendipin AL,Nitrendipin Apogepha,Nitrendipin Atid,Nitrendipin Basics,Nitrendipin Heumann,Nitrendipin Jenapharm,Nitrendipin Lindo,Nitrendipin Stada,Nitrendipin beta,Nitrendipin-ratiopharm,Nitrendipino Bayvit,Nitrendipino Ratiopharm,Nitrensal,Nitrepress,Tensogradal,Trendinol,Vastensium,nitrendipin von ct,nitrendipin-corax,Nitre Puren,NitrePuren,Nitrendipin ratiopharm,Nitrendipinratiopharm,nitrendipin corax,nitrendipincorax
D011869 Radioligand Assay Quantitative determination of receptor (binding) proteins in body fluids or tissue using radioactively labeled binding reagents (e.g., antibodies, intracellular receptors, plasma binders). Protein-Binding Radioassay,Radioreceptor Assay,Assay, Radioligand,Assay, Radioreceptor,Assays, Radioligand,Assays, Radioreceptor,Protein Binding Radioassay,Protein-Binding Radioassays,Radioassay, Protein-Binding,Radioassays, Protein-Binding,Radioligand Assays,Radioreceptor Assays
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D011957 Receptors, Opioid Cell membrane proteins that bind opioids and trigger intracellular changes which influence the behavior of cells. The endogenous ligands for opioid receptors in mammals include three families of peptides, the enkephalins, endorphins, and dynorphins. The receptor classes include mu, delta, and kappa receptors. Sigma receptors bind several psychoactive substances, including certain opioids, but their endogenous ligands are not known. Endorphin Receptors,Enkephalin Receptors,Narcotic Receptors,Opioid Receptors,Receptors, Endorphin,Receptors, Enkephalin,Receptors, Narcotic,Receptors, Opiate,Endorphin Receptor,Enkephalin Receptor,Normorphine Receptors,Opiate Receptor,Opiate Receptors,Opioid Receptor,Receptors, Normorphine,Receptors, beta-Endorphin,beta-Endorphin Receptor,Receptor, Endorphin,Receptor, Enkephalin,Receptor, Opiate,Receptor, Opioid,Receptor, beta-Endorphin,Receptors, beta Endorphin,beta Endorphin Receptor,beta-Endorphin Receptors
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D002110 Caffeine A methylxanthine naturally occurring in some beverages and also used as a pharmacological agent. Caffeine's most notable pharmacological effect is as a central nervous system stimulant, increasing alertness and producing agitation. It also relaxes SMOOTH MUSCLE, stimulates CARDIAC MUSCLE, stimulates DIURESIS, and appears to be useful in the treatment of some types of headache. Several cellular actions of caffeine have been observed, but it is not entirely clear how each contributes to its pharmacological profile. Among the most important are inhibition of cyclic nucleotide PHOSPHODIESTERASES, antagonism of ADENOSINE RECEPTORS, and modulation of intracellular calcium handling. 1,3,7-Trimethylxanthine,Caffedrine,Coffeinum N,Coffeinum Purrum,Dexitac,Durvitan,No Doz,Percoffedrinol N,Percutaféine,Quick-Pep,Vivarin,Quick Pep,QuickPep

Related Publications

D Shi, and O Nikodijević, and K A Jacobson, and J W Daly
July 1986, British journal of pharmacology,
D Shi, and O Nikodijević, and K A Jacobson, and J W Daly
April 1988, Biological psychiatry,
D Shi, and O Nikodijević, and K A Jacobson, and J W Daly
August 2002, Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology,
D Shi, and O Nikodijević, and K A Jacobson, and J W Daly
September 1990, The Journal of pharmacology and experimental therapeutics,
D Shi, and O Nikodijević, and K A Jacobson, and J W Daly
October 1993, Drug development research,
D Shi, and O Nikodijević, and K A Jacobson, and J W Daly
February 1984, Life sciences,
D Shi, and O Nikodijević, and K A Jacobson, and J W Daly
August 1983, Brain research,
D Shi, and O Nikodijević, and K A Jacobson, and J W Daly
January 1997, Cell transplantation,
D Shi, and O Nikodijević, and K A Jacobson, and J W Daly
September 1988, Brain research bulletin,
D Shi, and O Nikodijević, and K A Jacobson, and J W Daly
January 1984, Annali dell'Istituto superiore di sanita,
Copied contents to your clipboard!