Biochemical characterization of alpha-adrenergic receptors in human brain and changes in Alzheimer-type dementia. 1986

S Shimohama, and T Taniguchi, and M Fujiwara, and M Kameyama

Using ligand binding techniques, we studied alpha-adrenergic receptors in brains obtained at autopsy from seven histologically normal controls and seven patients with histopathologically verified Alzheimer-type dementia (ATD). Binding of the alpha-adrenergic antagonists [3H]prazosin and [3H]yohimbine to membranes of human brains exhibited characteristics compatible with alpha 1- and alpha 2-adrenergic receptors, respectively. Binding of both ligands was saturable and reversible, with dissociation constants of 0.15 nM for [3H]prazosin and 5.5 nM for [3H]yohimbine. [3H]Prazosin binding was highest in the hippocampus and frontal cortex and lowest in the caudate and putamen in the control brains. [3H]Yohimbine binding was highest in the nucleus basalis of Meynert (NbM) and frontal cortex and lowest in the caudate and cerebellar hemisphere in the control brains. Compared with values for the controls, [3H]prazosin binding sites were significantly reduced in number in the hippocampus and cerebellar hemisphere, and [3H]yohimbine binding sites were significantly reduced in number in the NbM in the ATD brains. These results suggest that alpha 1- and alpha 2-adrenergic receptors are present in the human brain and that there are significant changes in numbers of both receptors in selected regions in patients with ATD.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D011224 Prazosin A selective adrenergic alpha-1 antagonist used in the treatment of HEART FAILURE; HYPERTENSION; PHEOCHROMOCYTOMA; RAYNAUD DISEASE; PROSTATIC HYPERTROPHY; and URINARY RETENTION. Furazosin,Minipress,Pratsiol,Prazosin HCL,Prazosin Hydrochloride,HCL, Prazosin,Hydrochloride, Prazosin
D011942 Receptors, Adrenergic, alpha One of the two major pharmacological subdivisions of adrenergic receptors that were originally defined by the relative potencies of various adrenergic compounds. The alpha receptors were initially described as excitatory receptors that post-junctionally stimulate SMOOTH MUSCLE contraction. However, further analysis has revealed a more complex picture involving several alpha receptor subtypes and their involvement in feedback regulation. Adrenergic alpha-Receptor,Adrenergic alpha-Receptors,Receptors, alpha-Adrenergic,alpha-Adrenergic Receptor,alpha-Adrenergic Receptors,Receptor, Adrenergic, alpha,Adrenergic alpha Receptor,Adrenergic alpha Receptors,Receptor, alpha-Adrenergic,Receptors, alpha Adrenergic,alpha Adrenergic Receptor,alpha Adrenergic Receptors,alpha-Receptor, Adrenergic,alpha-Receptors, Adrenergic
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D005260 Female Females
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

S Shimohama, and T Taniguchi, and M Fujiwara, and M Kameyama
January 1984, Journal de pharmacologie,
S Shimohama, and T Taniguchi, and M Fujiwara, and M Kameyama
January 1983, Neurobiology of aging,
S Shimohama, and T Taniguchi, and M Fujiwara, and M Kameyama
January 1978, Neuropathology and applied neurobiology,
S Shimohama, and T Taniguchi, and M Fujiwara, and M Kameyama
November 2002, Life sciences,
S Shimohama, and T Taniguchi, and M Fujiwara, and M Kameyama
January 1988, Neurochemistry international,
S Shimohama, and T Taniguchi, and M Fujiwara, and M Kameyama
October 1990, Annals of neurology,
S Shimohama, and T Taniguchi, and M Fujiwara, and M Kameyama
November 1984, Neuroscience letters,
S Shimohama, and T Taniguchi, and M Fujiwara, and M Kameyama
January 1986, Acta neuropathologica,
S Shimohama, and T Taniguchi, and M Fujiwara, and M Kameyama
October 1992, Brain : a journal of neurology,
S Shimohama, and T Taniguchi, and M Fujiwara, and M Kameyama
January 1993, Gynecologic and obstetric investigation,
Copied contents to your clipboard!