A comparison of miniature end-plate potentials at normal, denervated, and long-term botulinum toxin type A poisoned frog neuromuscular junctions. 1986

M T Lupa, and S P Yu

The effects of denervation and long-term botulinum toxin type A (BoTx) poisoning on miniature end-plate potentials (m.e.p.p.s) in the frog were studied with intracellular microelectrode recording. BoTx reduced the frequency of m.e.p.p.s to less than 1% of the level seen in untreated frogs, leaving a large percentage of tiny m.e.p.p.s and slow-rising m.e.p.p.s (slow m.e.p.p.s). Unlike what is observed in the rat, the frequency of slow m.e.p.p.s never increased above the low rate measured in the untreated controls, and in fact slightly but significantly decreased after BoTx. A comparison of the m.e.p.p.s seen after BoTx poisoning (BoTx m.e.p.p.s) and m.e.p.p.s seen after denervation (Schwann m.e.p.p.s) revealed many similarities between the two including amplitude and time-to-peak distributions, temperature Q10 values and responses to several drugs and procedures. However, it was concluded that BoTx m.e.p.p.s do not originate from the Schwann cells because denervation of BoTx-paralysed frogs abolishes all m.e.p.p.s and the drug 4-aminoquinoline affects BoTx m.e.p.p.s and Schwann m.e.p.p.s in opposite ways, increasing the frequency of the former while almost eliminating the latter. BoTx m.e.p.p.s and Schwann m.e.p.p.s probably represent similar processes of secretion which are non-specific in nature, having a lower energy barrier than for normal release and not originating from specialized areas of transmitter release.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009045 Motor Endplate The specialized postsynaptic region of a muscle cell. The motor endplate is immediately across the synaptic cleft from the presynaptic axon terminal. Among its anatomical specializations are junctional folds which harbor a high density of cholinergic receptors. Motor End-Plate,End-Plate, Motor,End-Plates, Motor,Endplate, Motor,Endplates, Motor,Motor End Plate,Motor End-Plates,Motor Endplates
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D010243 Paralysis A general term most often used to describe severe or complete loss of muscle strength due to motor system disease from the level of the cerebral cortex to the muscle fiber. This term may also occasionally refer to a loss of sensory function. (From Adams et al., Principles of Neurology, 6th ed, p45) Palsy,Plegia,Todd Paralysis,Todd's Paralysis,Palsies,Paralyses,Paralysis, Todd,Paralysis, Todd's,Plegias,Todds Paralysis
D010369 Pectoralis Muscles The pectoralis major and pectoralis minor muscles that make up the upper and fore part of the chest in front of the AXILLA. Pectoralis Major,Pectoralis Major Muscle,Pectoralis Minor,Pectoralis Minor Muscle,Pectoral Muscle,Muscle, Pectoral,Muscle, Pectoralis,Muscle, Pectoralis Major,Muscle, Pectoralis Minor,Muscles, Pectoralis Major,Pectoral Muscles,Pectoralis Major Muscles,Pectoralis Majors,Pectoralis Minor Muscles,Pectoralis Minors,Pectoralis Muscle
D011896 Rana temporaria A species of the family Ranidae occurring in a wide variety of habitats from within the Arctic Circle to South Africa, Australia, etc. European Common Frog,Frog, Common European,Common European Frog,Common Frog, European,European Frog, Common,Frog, European Common
D001905 Botulinum Toxins Toxic proteins produced from the species CLOSTRIDIUM BOTULINUM. The toxins are synthesized as a single peptide chain which is processed into a mature protein consisting of a heavy chain and light chain joined via a disulfide bond. The botulinum toxin light chain is a zinc-dependent protease which is released from the heavy chain upon ENDOCYTOSIS into PRESYNAPTIC NERVE ENDINGS. Once inside the cell the botulinum toxin light chain cleaves specific SNARE proteins which are essential for secretion of ACETYLCHOLINE by SYNAPTIC VESICLES. This inhibition of acetylcholine release results in muscular PARALYSIS. Botulin,Botulinum Neurotoxin,Botulinum Neurotoxins,Clostridium botulinum Toxins,Botulinum Toxin,Neurotoxin, Botulinum,Neurotoxins, Botulinum,Toxin, Botulinum,Toxins, Botulinum,Toxins, Clostridium botulinum
D001906 Botulism A disease caused by potent protein NEUROTOXINS produced by CLOSTRIDIUM BOTULINUM which interfere with the presynaptic release of ACETYLCHOLINE at the NEUROMUSCULAR JUNCTION. Clinical features include abdominal pain, vomiting, acute PARALYSIS (including respiratory paralysis), blurred vision, and DIPLOPIA. Botulism may be classified into several subtypes (e.g., food-borne, infant, wound, and others). (From Adams et al., Principles of Neurology, 6th ed, p1208) Botulism, Infantile,Botulism, Toxico-Infectious,Clostridium botulinum Infection,Foodborne Botulism,Infant Botulism,Toxico-Infectious Botulism,Wound Botulism,Botulism, Foodborne,Botulism, Infant,Botulism, Toxico Infectious,Botulism, Wound,Clostridium botulinum Infections,Foodborne Botulisms,Infant Botulisms,Infantile Botulism,Infection, Clostridium botulinum,Toxico Infectious Botulism,Wound Botulisms
D002258 Carbonyl Cyanide m-Chlorophenyl Hydrazone A proton ionophore. It is commonly used as an uncoupling agent and inhibitor of photosynthesis because of its effects on mitochondrial and chloroplast membranes. CCCP,Carbonyl Cyanide meta-Chlorophenyl Hydrazone,Carbonylcyanide 4-Chlorophenylhydrazone,Propanedinitrile, ((3-chlorophenyl)hydrazono)-,Carbonyl Cyanide m Chlorophenyl Hydrazone,4-Chlorophenylhydrazone, Carbonylcyanide,Carbonyl Cyanide meta Chlorophenyl Hydrazone,Carbonylcyanide 4 Chlorophenylhydrazone

Related Publications

M T Lupa, and S P Yu
June 1976, The Journal of physiology,
M T Lupa, and S P Yu
November 1984, The Journal of physiology,
M T Lupa, and S P Yu
April 1982, Proceedings of the Royal Society of London. Series B, Biological sciences,
M T Lupa, and S P Yu
January 1984, The Journal of physiology,
Copied contents to your clipboard!