Discrepancies between spontaneous and evoked synaptic potentials at normal, regenerating and botulinum toxin poisoned mammalian neuromuscular junctions. 1982

C Colméus, and S Gomez, and J Molgó, and S Thesleff

Amplitudes and times to peak of spontaneous miniature endplate potentials (m.e.p.ps) and evoked quantal endplate potentials (e.p.ps) were compared at normal, regenerating and botulinum toxin poisoned neuromuscular junctions of the extensor digitorum longus muscle of the rat. At normal junctions the mean time to peak of m.e.p.ps was longer and more variable than that of similar-sized e.p.ps. At endplates where nerve regeneration was induced by mechanical crushing of the motor nerve the frequency of m.e.p.ps was reduced and their amplitude distribution was broader than normal. The distribution of times to peak of m.e.p.ps was considerably broader than that of quantal e.p.ps recorded at the same endplates. At neuromuscular junctions poisoned with botulinum toxin type A, spontaneous and evoked transmitter release were greatly reduced. The amplitude distribution of m.e.p.ps was wider than that of e.p.ps and the time to peak of e.p.ps was about twice as fast as and less variable than that of m.e.p.ps. To explain the observed differences in time to peak among m.e.p.ps and between m.e.p.ps and quantal e.p.ps we suggest that some m.e.p.ps, but not e.p.ps, originate from transmitter quanta released from sites at a greater distance from postsynaptic receptors or that the release or diffusion process for acetylcholine is more prolonged when producing some of the m.e.p.ps. Such mechanisms produce at normal junctions a small population of m.e.p.ps with prolonged times to peak, at regenerating junctions a greater proportion of such m.e.p.ps and in botulinum toxin poisoning a majority.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D001905 Botulinum Toxins Toxic proteins produced from the species CLOSTRIDIUM BOTULINUM. The toxins are synthesized as a single peptide chain which is processed into a mature protein consisting of a heavy chain and light chain joined via a disulfide bond. The botulinum toxin light chain is a zinc-dependent protease which is released from the heavy chain upon ENDOCYTOSIS into PRESYNAPTIC NERVE ENDINGS. Once inside the cell the botulinum toxin light chain cleaves specific SNARE proteins which are essential for secretion of ACETYLCHOLINE by SYNAPTIC VESICLES. This inhibition of acetylcholine release results in muscular PARALYSIS. Botulin,Botulinum Neurotoxin,Botulinum Neurotoxins,Clostridium botulinum Toxins,Botulinum Toxin,Neurotoxin, Botulinum,Neurotoxins, Botulinum,Toxin, Botulinum,Toxins, Botulinum,Toxins, Clostridium botulinum
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

C Colméus, and S Gomez, and J Molgó, and S Thesleff
May 1972, Nature: New biology,
C Colméus, and S Gomez, and J Molgó, and S Thesleff
November 1986, Pflugers Archiv : European journal of physiology,
C Colméus, and S Gomez, and J Molgó, and S Thesleff
June 1986, Pflugers Archiv : European journal of physiology,
C Colméus, and S Gomez, and J Molgó, and S Thesleff
January 1990, Progress in brain research,
C Colméus, and S Gomez, and J Molgó, and S Thesleff
June 2004, News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society,
C Colméus, and S Gomez, and J Molgó, and S Thesleff
March 2009, Journal of visualized experiments : JoVE,
C Colméus, and S Gomez, and J Molgó, and S Thesleff
January 1990, Toxicon : official journal of the International Society on Toxinology,
C Colméus, and S Gomez, and J Molgó, and S Thesleff
March 2004, Movement disorders : official journal of the Movement Disorder Society,
Copied contents to your clipboard!