Pharmacologic characterization and autoradiographic distribution of binding sites for iodinated tachykinins in the rat central nervous system. 1986

S H Buck, and C J Helke, and E Burcher, and C W Shults, and T L O'Donohue

P-type, E-type, and K-type tachykinin binding sites have been identified in the mammalian CNS. These sites may be tachykinin receptors for which the mammalian neuropeptides substance P, neuromedin K, and substance K are the preferred natural agonists, respectively. In the present investigation, we have compared the pharmacology and the autoradiographic distribution of CNS binding sites for the iodinated (125I-Bolton-Hunter reagent) tachykinins substance P, eledoisin, neuromedin K, and substance K. Iodinated eledoisin and neuromedin K exhibited an E-type binding pattern in cortical membranes. Iodinated eledoisin, neuromedin K, and substance K each labeled sites that had a similar distribution but one that was considerably different from that of sites labeled by iodinated substance P. CNS regions where there were detectable densities of binding sites for iodinated eledoisin, neuromedin K, and substance K and few or no sites for iodinated substance P included cortical layers IV-VI, mediolateral septum, supraoptic and paraventricular nuclei, interpeduncular nucleus, ventral tegmental area, and substantia nigra pars compacta. Binding sites for SP were generally more widespread in the CNS. CNS regions where there was a substantial density of binding sites for iodinated substance P and few or no sites for iodinated eledoisin, neuromedin K, and substance K included cortical layers I and II, olfactory tubercle, nucleus accumbens, caudate-putamen, globus pallidus, medial and lateral septum, endopiriform nucleus, rostral thalamus, medial and lateral preoptic nuclei, arcuate nucleus, dorsal raphe nucleus, dorsal parabrachial nucleus, parabigeminal nucleus, cerebellum, inferior olive, nucleus ambiguus, retrofacial and reticular nuclei, and spinal cord autonomic and somatic motor nuclei. In the brainstem, iodinated substance P labeled sites in both sensory and motor nuclei whereas iodinated eledoisin, neuromedin K, and substance K labeled primarily sensory nuclei. Our results are consistent with either of two alternatives: (1) that iodinated eledoisin, neuromedin K, and substance K bind to the same receptor site in the rat CNS, or (2) that they bind to multiple types of receptor sites with very similar distribution.

UI MeSH Term Description Entries
D007457 Iodine Radioisotopes Unstable isotopes of iodine that decay or disintegrate emitting radiation. I atoms with atomic weights 117-139, except I 127, are radioactive iodine isotopes. Radioisotopes, Iodine
D008297 Male Males
D009479 Neuropeptides Peptides released by NEURONS as intercellular messengers. Many neuropeptides are also hormones released by non-neuronal cells. Neuropeptide
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions

Related Publications

S H Buck, and C J Helke, and E Burcher, and C W Shults, and T L O'Donohue
November 1986, Brain research,
S H Buck, and C J Helke, and E Burcher, and C W Shults, and T L O'Donohue
January 1986, Peptides,
S H Buck, and C J Helke, and E Burcher, and C W Shults, and T L O'Donohue
August 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience,
S H Buck, and C J Helke, and E Burcher, and C W Shults, and T L O'Donohue
January 1985, Peptides,
S H Buck, and C J Helke, and E Burcher, and C W Shults, and T L O'Donohue
January 1990, Neuroscience,
S H Buck, and C J Helke, and E Burcher, and C W Shults, and T L O'Donohue
January 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience,
S H Buck, and C J Helke, and E Burcher, and C W Shults, and T L O'Donohue
July 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience,
S H Buck, and C J Helke, and E Burcher, and C W Shults, and T L O'Donohue
January 1988, Journal of chemical neuroanatomy,
S H Buck, and C J Helke, and E Burcher, and C W Shults, and T L O'Donohue
November 1975, Nature,
S H Buck, and C J Helke, and E Burcher, and C W Shults, and T L O'Donohue
January 1989, Neuropeptides,
Copied contents to your clipboard!