Characterization and autoradiographic distribution of vasoactive intestinal peptide binding sites in the rat central nervous system. 1986

J Besson, and A Sarrieau, and M Vial, and J C Marie, and G Rosselin, and W Rostene

Biochemical characteristics and topographical distribution of mono-[125I )vasoactive intestinal peptide (VIP) binding sites in rat brain were studied on tissue sections and by quantitative autoradiography. Biochemical investigations show two classes of binding sites with a dissociation constant of 1.03 +/- 0.11 nM and 68 +/- 14 nM and a maximal binding capacity of 43.3 +/- 5.1 fmol/mg protein and 713 +/- 117 fmol/mg protein respectively. The order of potency of various peptides to inhibit 125I-VIP binding to brain sections is: VIP greater than PHI greater than secretin greater than VIP greater than hGRF. Autoradiography reveals the highest densities of binding sites in the pineal gland, the dentate gyrus of the hippocampus, the central amygdaloid nucleus and in various thalamic nuclei such as the mediodorsal, lateral posterior, submedius, dorsolateral and medial geniculate nuclei. Similar high densities are observed in the olfactory bulbs as well as in the suprachiasmatic and dorsomedial nuclei of the hypothalamus and in the superior colliculus. These data together with the distribution of the endogenous peptide suggest a physiological role for VIP both in the regulation of CNS activities and pituitary functions.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D010870 Pineal Gland A light-sensitive neuroendocrine organ attached to the roof of the THIRD VENTRICLE of the brain. The pineal gland secretes MELATONIN, other BIOGENIC AMINES and NEUROPEPTIDES. Epiphysis Cerebri,Pineal Body,Corpus Pineale,Gland, Pineal,Pineal Bodies,Pineal Glands
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

J Besson, and A Sarrieau, and M Vial, and J C Marie, and G Rosselin, and W Rostene
January 1984, Peptides,
J Besson, and A Sarrieau, and M Vial, and J C Marie, and G Rosselin, and W Rostene
June 1990, Brain research,
J Besson, and A Sarrieau, and M Vial, and J C Marie, and G Rosselin, and W Rostene
January 1985, Peptides,
J Besson, and A Sarrieau, and M Vial, and J C Marie, and G Rosselin, and W Rostene
January 1986, Peptides,
J Besson, and A Sarrieau, and M Vial, and J C Marie, and G Rosselin, and W Rostene
January 1986, Peptides,
J Besson, and A Sarrieau, and M Vial, and J C Marie, and G Rosselin, and W Rostene
March 1991, Experimental eye research,
J Besson, and A Sarrieau, and M Vial, and J C Marie, and G Rosselin, and W Rostene
July 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience,
J Besson, and A Sarrieau, and M Vial, and J C Marie, and G Rosselin, and W Rostene
August 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience,
J Besson, and A Sarrieau, and M Vial, and J C Marie, and G Rosselin, and W Rostene
January 1991, Journal of chemical neuroanatomy,
Copied contents to your clipboard!