Yeast carboxypeptidase Y can be translocated and glycosylated without its amino-terminal signal sequence. 1987

E Blachly-Dyson, and T H Stevens

We have constructed a series of mutations in the signal sequence of the yeast vacuolar protein carboxypeptidase Y (CPY), and have used pulse-chase radiolabeling and immunoprecipitation to examine the in vivo effects of these mutations on the entry of the mutant CPY proteins into the secretory pathway. We find that introduction of a negatively charged residue, aspartate, into the hydrophobic core of the signal sequence has no apparent effect on signal sequence function. In contrast, internal in-frame deletions within the signal sequence cause CPY to be synthesized as unglycosylated precursors. These are slowly and inefficiently converted to glycosylated precursors that are indistinguishable from the glycosylated forms produced from the wild-type gene. These precursors are converted to active CPY in a PEP4-dependent manner, indicating that they are correctly localized to the vacuole. Surprisingly, a deletion mutation that removes the entire CPY signal sequence has a similar effect: unglycosylated precursor accumulates in cells carrying this mutant gene, and greater than 10% of it is posttranslationally glycosylated. Thus, the amino-terminal signal sequence of CPY, while important for translocation efficiency, is not absolutely required for the translocation of this protein.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D002268 Carboxypeptidases Enzymes that act at a free C-terminus of a polypeptide to liberate a single amino acid residue. Carboxypeptidase
D002872 Chromosome Deletion Actual loss of portion of a chromosome. Monosomy, Partial,Partial Monosomy,Deletion, Chromosome,Deletions, Chromosome,Monosomies, Partial,Partial Monosomies
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004274 DNA, Recombinant Biologically active DNA which has been formed by the in vitro joining of segments of DNA from different sources. It includes the recombination joint or edge of a heteroduplex region where two recombining DNA molecules are connected. Genes, Spliced,Recombinant DNA,Spliced Gene,Recombinant DNA Research,Recombination Joint,DNA Research, Recombinant,Gene, Spliced,Joint, Recombination,Research, Recombinant DNA,Spliced Genes
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

E Blachly-Dyson, and T H Stevens
September 1987, Molecular and cellular biology,
E Blachly-Dyson, and T H Stevens
August 1990, The Journal of cell biology,
E Blachly-Dyson, and T H Stevens
February 1979, European journal of biochemistry,
E Blachly-Dyson, and T H Stevens
January 1984, Methods in molecular biology (Clifton, N.J.),
E Blachly-Dyson, and T H Stevens
May 1959, The Journal of biological chemistry,
E Blachly-Dyson, and T H Stevens
June 1990, Applied microbiology and biotechnology,
E Blachly-Dyson, and T H Stevens
September 1975, Journal of bacteriology,
E Blachly-Dyson, and T H Stevens
November 1981, International journal of peptide and protein research,
E Blachly-Dyson, and T H Stevens
April 1953, Biochimica et biophysica acta,
Copied contents to your clipboard!