The yeast acid phosphatase can enter the secretory pathway without its N-terminal signal sequence. 1987

S Silve, and M Monod, and A Hinnen, and R Haguenauer-Tsapis
Laboratoire de Biochimie des Porphyrines, Institut Jacques Monod, Université Paris VII, France.

The repressible Saccharomyces cerevisiae acid phosphatase (APase) coded by the PHO5 gene is a cell wall glycoprotein that follows the yeast secretory pathway. We used in vitro mutagenesis to construct a deletion (delta SP) including the entire signal sequence and four amino acids of the mature sequence of APase. An APase-deficient yeast strain was transformed with a high-copy-number plasmid carrying the PHO5/delta SP gene. When expressed in vivo, the PHO5/delta SP gene product accumulated predominantly as an inactive, unglycosylated form located inside the cell. A large part of this unglycosylated precursor underwent proteolytic degradation, but up to 30% of it was translocated, core glycosylated, and matured by the addition of mannose residues, before reaching the cell wall. It appears, therefore, that the signal sequence is important for efficient translocation and core glycosylation of yeast APase but that it is not absolutely necessary for entry of the protein into the yeast secretory pathway. mRNA obtained by in vitro transcription of PHO5 and PHO5/delta SP genes were translated in vitro in the presence of either reticulocyte lysate and dog pancreatic microsomes or yeast lysate and yeast microsomes. The PHO5 gene product was translocated and core glycosylated in the heterologous system and less efficiently in the homologous system. We were not able to detect any translocation or glycosylation of PHO5/delta SP gene product in the heterologous system, but a very small amount of core suppression of glycosylated material could be evidenced in the homologous system.

UI MeSH Term Description Entries
D007158 Immunologic Techniques Techniques used to demonstrate or measure an immune response, and to identify or measure antigens using antibodies. Antibody Dissociation,Immunologic Technic,Immunologic Technics,Immunologic Technique,Immunological Technics,Immunological Techniques,Technic, Immunologic,Technics, Immunologic,Technique, Immunologic,Techniques, Immunologic,Antibody Dissociations,Dissociation, Antibody,Dissociations, Antibody,Immunological Technic,Immunological Technique,Technic, Immunological,Technics, Immunological,Technique, Immunological,Techniques, Immunological
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D002872 Chromosome Deletion Actual loss of portion of a chromosome. Monosomy, Partial,Partial Monosomy,Deletion, Chromosome,Deletions, Chromosome,Monosomies, Partial,Partial Monosomies
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D006023 Glycoproteins Conjugated protein-carbohydrate compounds including MUCINS; mucoid, and AMYLOID glycoproteins. C-Glycosylated Proteins,Glycosylated Protein,Glycosylated Proteins,N-Glycosylated Proteins,O-Glycosylated Proteins,Glycoprotein,Neoglycoproteins,Protein, Glycosylated,Proteins, C-Glycosylated,Proteins, Glycosylated,Proteins, N-Glycosylated,Proteins, O-Glycosylated
D000135 Acid Phosphatase An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.2. Acid beta-Glycerophosphatase,Acid beta Glycerophosphatase
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

S Silve, and M Monod, and A Hinnen, and R Haguenauer-Tsapis
May 1987, The Journal of cell biology,
S Silve, and M Monod, and A Hinnen, and R Haguenauer-Tsapis
December 1991, Protein sequences & data analysis,
S Silve, and M Monod, and A Hinnen, and R Haguenauer-Tsapis
June 1989, European journal of biochemistry,
S Silve, and M Monod, and A Hinnen, and R Haguenauer-Tsapis
October 2020, International journal of molecular sciences,
S Silve, and M Monod, and A Hinnen, and R Haguenauer-Tsapis
April 1987, Biochimica et biophysica acta,
S Silve, and M Monod, and A Hinnen, and R Haguenauer-Tsapis
February 1993, Journal of protein chemistry,
S Silve, and M Monod, and A Hinnen, and R Haguenauer-Tsapis
January 1991, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie,
S Silve, and M Monod, and A Hinnen, and R Haguenauer-Tsapis
October 2022, The Journal of biological chemistry,
S Silve, and M Monod, and A Hinnen, and R Haguenauer-Tsapis
January 1988, Preparative biochemistry,
Copied contents to your clipboard!