Consensus topography in the ATP binding site of the simian virus 40 and polyomavirus large tumor antigens. 1987

M K Bradley, and T F Smith, and R H Lathrop, and D M Livingston, and T A Webster

The location and sequence composition of a consensus element of the nucleotide binding site in both simian virus 40 (SV40) and polyomavirus (PyV) large tumor antigens (T antigens) can be predicted with the assistance of a computer-based pattern-matching system, ARIADNE. The latter was used to optimally align elements of T antigen primary sequence and predicted secondary structure with a "descriptor" for a mononucleotide binding fold. Additional consensus elements of the nucleotide binding site in these two proteins were derived from comparisons of T antigen primary and predicted secondary structures with x-ray structures of the nucleotide binding sites in four otherwise unrelated proteins. Each of these elements was predicted to be encompassed within a 110-residue segment that is highly conserved between the two T antigens residues 418-528 in SV40 T antigen and residues 565-675 in PyV). Results of biochemical and immunologic experiments on the nucleotide binding behavior of these proteins were found to be consistent with these predictions. Taken together, the latter have resulted in a topological model of the ATP binding site in these two oncogene products.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009856 Oncogene Proteins, Viral Products of viral oncogenes, most commonly retroviral oncogenes. They usually have transforming and often protein kinase activities. Viral Oncogene Proteins,Viral Transforming Proteins,v-onc Proteins,Transforming Proteins, Viral,v onc Proteins
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011120 Polyomavirus A genus of potentially oncogenic viruses of the family POLYOMAVIRIDAE. These viruses are normally present in their natural hosts as latent infections. The virus is oncogenic in hosts different from the species of origin. Bovine polyomavirus,Murine polyomavirus,Hamster polyomavirus,Polyoma Virus,Polyoma Viruses,Bovine polyomaviruses,Hamster polyomaviruses,Murine polyomaviruses,Polyomaviruses,Virus, Polyoma,Viruses, Polyoma,polyomavirus, Hamster,polyomaviruses, Bovine,polyomaviruses, Murine
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D003488 Cyanogen Bromide Cyanogen bromide (CNBr). A compound used in molecular biology to digest some proteins and as a coupling reagent for phosphoroamidate or pyrophosphate internucleotide bonds in DNA duplexes. Bromide, Cyanogen
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

M K Bradley, and T F Smith, and R H Lathrop, and D M Livingston, and T A Webster
May 1985, Journal of virology,
M K Bradley, and T F Smith, and R H Lathrop, and D M Livingston, and T A Webster
September 1986, Journal of virology,
M K Bradley, and T F Smith, and R H Lathrop, and D M Livingston, and T A Webster
March 1984, Journal of virology,
M K Bradley, and T F Smith, and R H Lathrop, and D M Livingston, and T A Webster
April 1986, Molecular and cellular biology,
M K Bradley, and T F Smith, and R H Lathrop, and D M Livingston, and T A Webster
February 1982, Proceedings of the National Academy of Sciences of the United States of America,
M K Bradley, and T F Smith, and R H Lathrop, and D M Livingston, and T A Webster
September 1991, Journal of virology,
M K Bradley, and T F Smith, and R H Lathrop, and D M Livingston, and T A Webster
October 1987, Biochimica et biophysica acta,
M K Bradley, and T F Smith, and R H Lathrop, and D M Livingston, and T A Webster
November 1969, Journal of virology,
M K Bradley, and T F Smith, and R H Lathrop, and D M Livingston, and T A Webster
December 1995, Journal of virology,
M K Bradley, and T F Smith, and R H Lathrop, and D M Livingston, and T A Webster
January 1988, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!