Review: passive immunity in beef-suckler calves. 2019

M McGee, and B Earley
Teagasc,Animal & Grassland Research and Innovation Centre,Grange, Dunsany, Co. Meath, C15 PW93,Ireland.

Colostrum-derived passive immunity is central to the health, performance and welfare of neonatal beef-suckler calves, and economics of beef-farming enterprises. Compared to dairy calves, mainly Holstein-Friesian, there is much less research carried out on passive immunity and associated factors in beef calves. Thus, this review aimed to summarise and interpret published information and highlight areas requiring further research. The transfer of immunoglobulin G1 (IgG1) from blood to mammary secretions is greater for beef × dairy cows compared to most beef breed types. Considerable between-animal variance is evident in first-milking colostrum yield and immunoglobulin concentration of beef-suckler cow breed types. First-milking colostrum immunoglobulin concentrations are similar for within-quarter fractions and for the front and rear quarters of the udder. First-milking colostrum yield is higher for beef × dairy cows than beef × beef and purebred beef breeds, and higher for multiparous than primiparous cows, but generally colostrum immunoglobulin concentration is relatively similar for each of the respective categories. Consequently, colostrum immunoglobulin mass (volume × concentration) production in beef cows seems to be primarily limited by colostrum volume. The effect of maternal nutrition during late gestation on colostrum yield is not well documented; however, most studies provide evidence that colostrum immunoglobulin concentration is not adversely affected by under-nutrition. Factors that impinge upon the duration between birth and first suckling, including dam parity, udder and teat anatomy and especially dystocia, negatively impact on calf passive immunity. Colostrum immunoglobulin mass ingested relative to birth weight post-parturition is the most important variable determining calf passive immunity. Research indicates that feeding the beef calf a colostrum volume equivalent to 5% of birth weight shortly after parturition, with subsequent suckling of the dam (or a second feed) 6 to 8 h later, ensures adequate passive immunity, equivalent to a well-managed suckling situation. Within beef-suckler cow genotypes, calf passive immunity is similar for many common beef breeds, but is generally higher for calves from beef × dairy cows. Compared to older cows, calves from younger cows, especially primiparous animals, have lower serum immunoglobulin concentrations. Most studies have shown no adverse impact of maternal dietary restriction on calf passive immunity. The prevalence of failure of passive transfer (FPT) in beef calves varies considerably across studies depending on the test used, and what cut-off value is assumed or how it is classified. The accuracy and precision of methodologies used to determine immunoglobulin concentrations is concerning; caution is required in interpreting laboratory results regarding defining colostrum 'quality' and calf passive immune 'status'. Further research is warranted on colostrum-related factors limiting passive immunity of beef calves, and on the validation of laboratory test cut-off points for determining FPT, based on their relationships with key health and performance measures.

UI MeSH Term Description Entries
D007112 Immunity, Maternally-Acquired Resistance to a disease-causing agent induced by the introduction of maternal immunity into the fetus by transplacental transfer or into the neonate through colostrum and milk. Fetal Immunity, Maternally-Acquired,Maternally-Acquired Immunity,Neonatal Immunity, Maternally-Acquired,Immunity, Maternally Acquired,Fetal Immunities, Maternally-Acquired,Fetal Immunity, Maternally Acquired,Immunity, Maternally-Acquired Fetal,Immunity, Maternally-Acquired Neonatal,Maternally Acquired Immunities,Maternally Acquired Immunity,Maternally-Acquired Fetal Immunities,Maternally-Acquired Fetal Immunity,Maternally-Acquired Immunities,Maternally-Acquired Neonatal Immunities,Maternally-Acquired Neonatal Immunity,Neonatal Immunities, Maternally-Acquired,Neonatal Immunity, Maternally Acquired
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D003126 Colostrum The thin, yellow, serous fluid secreted by the mammary glands during pregnancy and immediately postpartum before lactation begins. It consists of immunologically active substances, white blood cells, water, protein, fat, and carbohydrates. Colostrums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000833 Animals, Suckling Young, unweaned mammals. Refers to nursing animals whether nourished by their biological mother, foster mother, or bottle fed. Animal, Suckling,Suckling Animal,Suckling Animals

Related Publications

M McGee, and B Earley
July 2015, Parasitology,
M McGee, and B Earley
May 2006, Schweizer Archiv fur Tierheilkunde,
M McGee, and B Earley
October 1973, Canadian journal of comparative medicine : Revue canadienne de medecine comparee,
M McGee, and B Earley
January 2021, Journal of veterinary internal medicine,
M McGee, and B Earley
January 1993, The Veterinary record,
M McGee, and B Earley
June 2018, The Veterinary record,
Copied contents to your clipboard!