Feedback regulation of the spc operon in Escherichia coli: translational coupling and mRNA processing. 1988

L C Mattheakis, and M Nomura
Department of Biological Chemistry, University of California, Irvine 92717.

The spc operon of Escherichia coli encodes 10 ribosomal proteins in the order L14, L24, L5, S14, S8, L6, L18, S5, L30, and L15. This operon is feedback regulated by S8, which binds near the translation start site of L5 and inhibits translation of L5 directly and that of the distal genes indirectly. We constructed plasmids carrying a major portion of the spc operon genes under lac transcriptional control. The plasmids carried a point mutation in the S8 target site which abolished regulation and resulted in overproduction of plasmid-encoded ribosomal proteins upon induction. We showed that alteration of the AUG start codon of L5 to UAG decreased the synthesis rates of plasmid-encoded distal proteins, as well as L5, by approximately 20-fold, with a much smaller (if any) effect on mRNA synthesis rates, indicating coupling of the distal cistrons' translation with the translation of L5. This conclusion was also supported by experiments in which S8 was overproduced in trans. In this case, there was a threefold reduction in the synthesis rates of chromosome-encoded L5 and the distal spc operon proteins, but no decrease in the mRNA synthesis rate. These observations also suggest that transcription from ribosomal protein promoters may be special, perhaps able to overcome transcription termination signals. We also analyzed the state of ribosomal protein mRNA after overproduction of S8 in these experiments and found that repression of ribosomal protein synthesis was accompanied by stimulation of processing (and degradation) of spc operon mRNA. The possible role of mRNA degradation in tightening the regulation is discussed.

UI MeSH Term Description Entries
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005246 Feedback A mechanism of communication within a system in that the input signal generates an output response which returns to influence the continued activity or productivity of that system. Feedbacks
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D012269 Ribosomal Proteins Proteins found in ribosomes. They are believed to have a catalytic function in reconstituting biologically active ribosomal subunits. Proteins, Ribosomal,Ribosomal Protein,Protein, Ribosomal
D012323 RNA Processing, Post-Transcriptional Post-transcriptional biological modification of messenger, transfer, or ribosomal RNAs or their precursors. It includes cleavage, methylation, thiolation, isopentenylation, pseudouridine formation, conformational changes, and association with ribosomal protein. Post-Transcriptional RNA Modification,RNA Processing,Post-Transcriptional RNA Processing,Posttranscriptional RNA Processing,RNA Processing, Post Transcriptional,RNA Processing, Posttranscriptional,Modification, Post-Transcriptional RNA,Modifications, Post-Transcriptional RNA,Post Transcriptional RNA Modification,Post Transcriptional RNA Processing,Post-Transcriptional RNA Modifications,Processing, Posttranscriptional RNA,Processing, RNA,RNA Modification, Post-Transcriptional,RNA Modifications, Post-Transcriptional
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

L C Mattheakis, and M Nomura
August 1997, Proceedings of the National Academy of Sciences of the United States of America,
L C Mattheakis, and M Nomura
November 1998, Molecular microbiology,
L C Mattheakis, and M Nomura
January 1985, Molecular & general genetics : MGG,
L C Mattheakis, and M Nomura
June 1989, Journal of bacteriology,
L C Mattheakis, and M Nomura
July 1987, Journal of molecular biology,
L C Mattheakis, and M Nomura
December 1992, Molecular microbiology,
L C Mattheakis, and M Nomura
March 1989, Journal of molecular biology,
L C Mattheakis, and M Nomura
February 1992, Journal of bacteriology,
Copied contents to your clipboard!