Effects of frequency and airway pressure on gas exchange during interrupted high-frequency, positive-pressure ventilation in ponies. 1988

D V Wilson, and L Suslak, and L R Soma
Department of Anesthesia, University of Pennsylvania School of Veterinary Medicine, Kennett Square, PA 19348.

Cardiovascular effects and pulmonary gas exchange were compared during conventional mechanical ventilation (CMV) and interrupted high-frequency, positive-pressure ventilation (IHFPPV) in 6 anesthetized ponies in dorsal recumbency. When the peak airway pressure (Paw) was held constant at control values attained during CMV (18 to 20 cm of H2O), and the ventilator frequency of IHFPPV was varied over the range, 2.5 to 12.5 Hz, significant (P less than 0.05) changes from control values were observed only in the ratio of dead-space volume to tidal volume (VD/VT) and in the respiratory minute volume (VE). The mean (+/- SEM) carbon dioxide excretion (VCO2) was 2.12 +/- 0.1 ml/kg/min during IHFPPV. Dead-space ventilation ranged from 40 to 73.7% of total ventilation and increased directly with increasing frequency. The VE also increased, from 89 ml/kg/min at a ventilatory frequency of 2.5 Hz to 145 ml/kg/min at a frequency of 12.5 Hz. Maintaining the frequency of IHFPPV constant at 12.5 Hz and increasing the Paw over the range of 5 to 30 cm of H2O caused significant (P less than 0.05) changes in arterial partial pressure of O2 (PaO2), VCO2, pulmonary shunt fraction (QS/QT), VE, arterial-alveolar differences in oxygen tension (AaDO2), VD/VT, and cardiac output, compared with CMV. The PaO2 and the VCO2 increased linearly with increasing Paw. With increasing Paw, VD/VT decreased directly with increasing Paw from 98 to 69.3%. Gas exchange at a Paw of 15 cm of H2O during IHFPPV was equivalent to conditions at Paw of 20 cm of H2O during CMV. At a higher Paw during IHFPPV, improvements over control values were observed in gas exchange.

UI MeSH Term Description Entries
D007385 Intermittent Positive-Pressure Ventilation Application of positive pressure to the inspiratory phase when the patient has an artificial airway in place and is connected to a ventilator. BIPAP Biphasic Intermittent Positive Airway Pressure,IPPV,Inspiratory Positive-Pressure Ventilation,Ventilation, Intermittent Positive-Pressure,Biphasic Intermittent Positive Airway Pressure,Inspiratory Positive Pressure Ventilation,Intermittent Positive Pressure Ventilation,Positive-Pressure Ventilation, Inspiratory,Positive-Pressure Ventilation, Intermittent,Ventilation, Inspiratory Positive-Pressure,Ventilation, Intermittent Positive Pressure
D008176 Lung Volume Measurements Measurement of the amount of air that the lungs may contain at various points in the respiratory cycle. Lung Capacities,Lung Volumes,Capacity, Lung,Lung Capacity,Lung Volume,Lung Volume Measurement,Measurement, Lung Volume,Volume, Lung
D008297 Male Males
D011175 Positive-Pressure Respiration A method of mechanical ventilation in which pressure is maintained to increase the volume of gas remaining in the lungs at the end of expiration, thus reducing the shunting of blood through the lungs and improving gas exchange. Positive End-Expiratory Pressure,Positive-Pressure Ventilation,End-Expiratory Pressure, Positive,End-Expiratory Pressures, Positive,Positive End Expiratory Pressure,Positive End-Expiratory Pressures,Positive Pressure Respiration,Positive Pressure Ventilation,Positive-Pressure Respirations,Positive-Pressure Ventilations,Pressure, Positive End-Expiratory,Pressures, Positive End-Expiratory,Respiration, Positive-Pressure,Respirations, Positive-Pressure,Ventilation, Positive-Pressure,Ventilations, Positive-Pressure
D011659 Pulmonary Gas Exchange The exchange of OXYGEN and CARBON DIOXIDE between alveolar air and pulmonary capillary blood that occurs across the BLOOD-AIR BARRIER. Exchange, Pulmonary Gas,Gas Exchange, Pulmonary
D012123 Pulmonary Ventilation The total volume of gas inspired or expired per unit of time, usually measured in liters per minute. Respiratory Airflow,Ventilation Tests,Ventilation, Pulmonary,Expiratory Airflow,Airflow, Expiratory,Airflow, Respiratory,Test, Ventilation,Tests, Ventilation,Ventilation Test
D006612 High-Frequency Ventilation Ventilatory support system using frequencies from 60-900 cycles/min or more. Three types of systems have been distinguished on the basis of rates, volumes, and the system used. They are high frequency positive-pressure ventilation (HFPPV); HIGH-FREQUENCY JET VENTILATION; (HFJV); and high-frequency oscillation (HFO). High-Frequency Oscillation Ventilation,High-Frequency Positive Pressure Ventilation,Ventilation, High-Frequency,High Frequency Oscillation Ventilation,High Frequency Positive Pressure Ventilation,High Frequency Ventilation,Ventilation, High Frequency,High Frequency Ventilations,High-Frequency Oscillation Ventilations,High-Frequency Ventilations,Oscillation Ventilation, High-Frequency,Oscillation Ventilations, High-Frequency,Ventilation, High-Frequency Oscillation,Ventilations, High Frequency,Ventilations, High-Frequency,Ventilations, High-Frequency Oscillation
D006736 Horses Large, hoofed mammals of the family EQUIDAE. Horses are active day and night with most of the day spent seeking and consuming food. Feeding peaks occur in the early morning and late afternoon, and there are several daily periods of rest. Equus caballus,Equus przewalskii,Horse, Domestic,Domestic Horse,Domestic Horses,Horse,Horses, Domestic
D000403 Airway Resistance Physiologically, the opposition to flow of air caused by the forces of friction. As a part of pulmonary function testing, it is the ratio of driving pressure to the rate of air flow. Airway Resistances,Resistance, Airway,Resistances, Airway
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D V Wilson, and L Suslak, and L R Soma
February 1991, Journal of applied physiology (Bethesda, Md. : 1985),
D V Wilson, and L Suslak, and L R Soma
September 1984, Critical care medicine,
D V Wilson, and L Suslak, and L R Soma
November 1986, Journal of applied physiology (Bethesda, Md. : 1985),
D V Wilson, and L Suslak, and L R Soma
January 1989, Acta anaesthesiologica Scandinavica. Supplementum,
D V Wilson, and L Suslak, and L R Soma
May 1982, Journal of applied physiology: respiratory, environmental and exercise physiology,
D V Wilson, and L Suslak, and L R Soma
April 1990, Early human development,
D V Wilson, and L Suslak, and L R Soma
January 1986, Acta anaesthesiologica Scandinavica,
D V Wilson, and L Suslak, and L R Soma
September 1984, Critical care medicine,
Copied contents to your clipboard!