Formation and development of photosynthetic units in repigmenting Rhodopseudomonas sphaeroides wild type and "Phofil" mutant strain. 1978

J Pradel, and J Lavergne, and I Moya

The formation of the photosynthetic apparatus in the wild type Rhodopseudomonas sphaeroides and in the "Phofil" mutant was investigated by analyzing absorption and fluorescence parameters and the kinetics of fluorescence induction. Repigmentation was induced by transfer of bleached cells to semi-aerobic culture conditions. 1. In the "Phofil" mutant, functional photosynthetic units appear at pigment cellular contents which depend on the physiological state of the inoculum. The unadapted mutant can reach the functional units stage at a cellular pigment level 20 times lower than that of the wild type, although the size and composition of the units are identical in both strains. This rules out the hypothesis of photosynthetic units forming by random integration of pigments into the membrane. Moreover, the fact that units are separate at this stage (as shown by the exponential shape of fluorescence induction kinetics) suggests that the units' formation proceeds from discrete predetermined membrane sites. 2. In repigmentng wild type cells, the multistep assembly of bacteriochlorophyll complexes appears correlated to their organization in photosynthetic units as follows: (i) During a first stage, B-875 is mostly synthesized, while the efficiency of transfer increases, suggesting that the pigments are initially interpersed at comparatively large average distances from each other in the bleached membrane. (ii) After 1.5 h of repigmentation, the transfer and trapping efficiencies reach a maximum. The units (26 B-875 + 11 B-850 per center) are still separate, as shown by exponential fluorescence kinetics. (iii) The increase in the units' size then essentially proceeds through B-850 incorporation. Energy transfer between units occurs at a comparatively late stage, i.e., 5 h repigmentation.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009024 Morphogenesis The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010788 Photosynthesis The synthesis by organisms of organic chemical compounds, especially carbohydrates, from carbon dioxide using energy obtained from light rather than from the oxidation of chemical compounds. Photosynthesis comprises two separate processes: the light reactions and the dark reactions. In higher plants; GREEN ALGAE; and CYANOBACTERIA; NADPH and ATP formed by the light reactions drive the dark reactions which result in the fixation of carbon dioxide. (from Oxford Dictionary of Biochemistry and Molecular Biology, 2001) Calvin Cycle,Calvin-Benson Cycle,Calvin-Benson-Bassham Cycle,Carbon Fixation, Photosynthetic,Reductive Pentose Phosphate Cycle,Dark Reactions of Photosynthesis,Calvin Benson Bassham Cycle,Calvin Benson Cycle,Cycle, Calvin,Cycle, Calvin-Benson,Cycle, Calvin-Benson-Bassham,Photosynthesis Dark Reaction,Photosynthesis Dark Reactions,Photosynthetic Carbon Fixation
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002734 Chlorophyll Porphyrin derivatives containing magnesium that act to convert light energy in photosynthetic organisms. Phyllobilins,Chlorophyll 740
D004735 Energy Transfer The transfer of energy of a given form among different scales of motion. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed). It includes the transfer of kinetic energy and the transfer of chemical energy. The transfer of chemical energy from one molecule to another depends on proximity of molecules so it is often used as in techniques to measure distance such as the use of FORSTER RESONANCE ENERGY TRANSFER. Transfer, Energy
D001429 Bacteriochlorophylls Pyrrole containing pigments found in photosynthetic bacteria. Bacteriochlorophyll
D012242 Rhodobacter sphaeroides Spherical phototrophic bacteria found in mud and stagnant water exposed to light. Rhodopseudomonas sphaeroides,Rhodobacter spheroides,Rhodopseudomonas spheroides
D013050 Spectrometry, Fluorescence Measurement of the intensity and quality of fluorescence. Fluorescence Spectrophotometry,Fluorescence Spectroscopy,Spectrofluorometry,Fluorescence Spectrometry,Spectrophotometry, Fluorescence,Spectroscopy, Fluorescence

Related Publications

J Pradel, and J Lavergne, and I Moya
June 1984, Journal of bacteriology,
J Pradel, and J Lavergne, and I Moya
January 1983, Journal of cellular biochemistry,
J Pradel, and J Lavergne, and I Moya
July 1981, Biochimica et biophysica acta,
J Pradel, and J Lavergne, and I Moya
October 1984, Proceedings of the National Academy of Sciences of the United States of America,
J Pradel, and J Lavergne, and I Moya
September 1981, Biochemistry,
J Pradel, and J Lavergne, and I Moya
January 1984, Molekuliarnaia biologiia,
Copied contents to your clipboard!