Light-induced increases in the glycine decarboxylase multienzyme complex from pea leaf mitochondria. 1986

J L Walker, and D J Oliver

The rates of mitochondrial glycine oxidation estimated by CO2-release and glycine-bicarbonate exchange activities in fully greened tissues are approximately 10 times greater than those of etiolated pea leaves and potato tuber mitochondria. The release of CO2 from glycine in intact mitochondria isolated from dark-grown and nonphotosynthetic tissues was sensitive to inhibitors of mitochondrial electron transport, glycine transport, and glycine decarboxylase activities. The CO2-release and glycine-bicarbonate exchange activities in crude mitochondrial protein extracts from light-grown versus dark-grown tissues exhibited light/dark ratios of 12 and 21, respectively. This suggests that the differences in capacity to oxidize glycine reside with the glycine decarboxylase enzyme complex itself. The complex is composed of four subunit enzymes, the P, H, T, and L proteins, which can be isolated individually and reconstituted into the active enzyme. The activities of P and T proteins were at least 10 times higher in fully greened pea leaves than in the etiolated tissue, while the H and L protein activities were four times higher in these same tissues. The levels of P and T proteins detected immunochemically were substantially lower in total mitochondrial extracts prepared from leaves of dark-grown pea seedlings. Labeling of whole pea seedlings and in vitro protein synthesis with isolated mitochondria indicated that the entire glycine decarboxylase enzyme complex is cytoplasmically synthesized and therefore encoded by the nucleus. Polypeptides synthesized from total leaf polyadenylated mRNA isolated from leaves of both the dark-grown and light-treated peas indicated the presence of P protein. This implies that translatable messages for this enzyme are present at some level throughout leaf development.

UI MeSH Term Description Entries
D007887 Fabaceae The large family of plants characterized by pods. Some are edible and some cause LATHYRISM or FAVISM and other forms of poisoning. Other species yield useful materials like gums from ACACIA and various LECTINS like PHYTOHEMAGGLUTININS from PHASEOLUS. Many of them harbor NITROGEN FIXATION bacteria on their roots. Many but not all species of "beans" belong to this family. Afzelia,Amorpha,Andira,Baptisia,Callerya,Ceratonia,Clathrotropis,Colophospermum,Copaifera,Delonix,Euchresta,Guibourtia,Legumes,Machaerium,Pithecolobium,Stryphnodendron,Leguminosae,Pea Family,Pithecellobium,Tachigalia,Families, Pea,Family, Pea,Legume,Pea Families
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010946 Plants, Medicinal Plants whose roots, leaves, seeds, bark, or other constituent parts possess therapeutic, tonic, purgative, curative or other pharmacologic attributes, when administered to man or animals. Herbs, Medicinal,Medicinal Herbs,Healing Plants,Medicinal Plants,Pharmaceutical Plants,Healing Plant,Herb, Medicinal,Medicinal Herb,Medicinal Plant,Pharmaceutical Plant,Plant, Healing,Plant, Medicinal,Plant, Pharmaceutical,Plants, Healing,Plants, Pharmaceutical
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D004272 DNA, Mitochondrial Double-stranded DNA of MITOCHONDRIA. In eukaryotes, the mitochondrial GENOME is circular and codes for ribosomal RNAs, transfer RNAs, and about 10 proteins. Mitochondrial DNA,mtDNA

Related Publications

J L Walker, and D J Oliver
July 1995, Archives of biochemistry and biophysics,
J L Walker, and D J Oliver
January 2007, Journal of experimental botany,
J L Walker, and D J Oliver
August 1981, Plant physiology,
Copied contents to your clipboard!