Activation of glycine decarboxylase in pea leaf mitochondria by ATP. 1995

Q Zhang, and J T Wiskich
Department of Botany, University of Adelaide, Australia.

Activity of glycine decarboxylase decreased by 60-70% after the isolated pea leaf mitochondria were aged for 5 h in the absence of glycine and was completely lost after 24 h. The reverse reaction, i.e., production of glycine from serine, ammonium, dihydrolipoate, and bicarbonate, was also inhibited in these aged mitochondria. Glycine decarboxylase could be reactivated by both exogenous and endogenous ATP. The latter was formed during the oxidation of succinate, malate, or oxoglutarate. Glycine decarboxylase consists of four subunits (P-, H-, L-, and T-proteins). The aged mitochondria were able to catalyze the exchange of [14C]-bicarbonate-glycine and the oxidation of dihydrolipoate, indicating the persistence of P-, H-, and L-protein activities. Serine hydroxymethyltransferase catalyzes the formation of serine from methylene tetrahydrofolate and another glycine and molecule at the last reaction of glycine oxidation. The aged mitochondria were able to catalyze the formation of methylene tetrahydrofolate from [14C]serine and its reverse reaction. Therefore, it was concluded that the loss of glycine decarboxylase activity was due to an inhibition of the reaction catalyzed by T-protein, which required ATP for its activation.

UI MeSH Term Description Entries
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000594 Amino Acid Oxidoreductases A class of enzymes that catalyze oxidation-reduction reactions of amino acids. Acid Oxidoreductases, Amino,Oxidoreductases, Amino Acid
D050841 Glycine Dehydrogenase (Decarboxylating) A PYRIDOXAL PHOSPHATE dependent enzyme that catalyzes the decarboxylation of GLYCINE with the transfer of an aminomethyl group to the LIPOIC ACID moiety of the GLYCINE DECARBOXYLASE COMPLEX H-PROTEIN. Defects in P-protein are the cause of non-ketotic hyperglycinemia. It is one of four subunits of the glycine decarboxylase complex. Glycine Cleavage System P-Protein,Glycine Decarboxylase,Glycine Decarboxylase Complex P-Protein,P-protein, Glycine Decarboxylase,Decarboxylase P-protein, Glycine,Decarboxylase, Glycine,Glycine Cleavage System P Protein,Glycine Decarboxylase Complex P Protein,Glycine Decarboxylase P-protein,P protein, Glycine Decarboxylase
D018532 Pisum sativum A variable annual leguminous vine that is cultivated for its rounded smooth or wrinkled edible protein-rich seeds, the seed of the pea, and the immature pods with their included seeds. (From Webster's New Collegiate Dictionary, 1973) Peas,Pisum,Pea

Related Publications

Q Zhang, and J T Wiskich
February 1986, The Journal of biological chemistry,
Q Zhang, and J T Wiskich
August 1986, Archives of biochemistry and biophysics,
Q Zhang, and J T Wiskich
August 1981, Plant physiology,
Q Zhang, and J T Wiskich
November 1982, Plant physiology,
Q Zhang, and J T Wiskich
August 1982, Biochemical and biophysical research communications,
Copied contents to your clipboard!