Amino acid specific ADP-ribosylation: specific NAD: arginine mono-ADP-ribosyltransferases associated with turkey erythrocyte nuclei and plasma membranes. 1986

R E West, and J Moss

Turkey erythrocytes contain NAD:arginine mono-ADP-ribosyltransferases which, like cholera toxin and Escherichia coli heat-labile enterotoxin, catalyze the transfer of ADP-ribose from NAD to proteins, to arginine and other low molecular weight guanidino compounds, and to water. Two such ADP-ribosyltransferases, A and B, have been purified from turkey erythrocyte cytosol. To characterize further the class of NAD:arginine ADP-ribosyltransferases, the particulate fraction was examined; 40% of erythrocyte transferase activity was localized to the nucleus and cell membrane. Transferase activity in a salt extract of a thoroughly washed particulate preparation was purified 36,000-fold by sequential chromatography on phenyl-Sepharose, (carboxymethyl) cellulose, concanavalin A-Sepharose, and NAD-agarose. Subsequent DNA-agarose chromatography separated two activities, termed transferases C and A', which were localized to the membrane and nucleus, respectively. Transferase C, the membrane-associated enzyme, was distinguished from the cytosolic enzymes by a relative insensitivity to salt and histone; transferase C was stimulated 2-fold by 300 mM NaCl in contrast to a 20-fold stimulation of transferase A and a 50% inhibition of transferase B. Similarly, histones, which stimulate transferase A 20-fold, enhanced transferase C activity only 2-fold. Transferase A', the nuclear enzyme, was retained on DNA-agarose. It was similar to transferase A in salt and histone sensitivity. Gel permeation chromatography showed slight molecular mass differences among the group of enzymes: A, 24,300 daltons (Da); B, 32,700 Da; C, and A', 25,500 Da. The affinities of transferase C for NAD and agmatine were similar to those of the cytosolic transferases A and B.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010430 Pentosyltransferases Enzymes of the transferase class that catalyze the transfer of a pentose group from one compound to another.
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014422 Turkeys Large woodland game BIRDS in the subfamily Meleagridinae, family Phasianidae, order GALLIFORMES. Formerly they were considered a distinct family, Melegrididae. Meleagridinae,Meleagrididae
D036002 ADP Ribose Transferases Enzymes that transfer the ADP-RIBOSE group of NAD or NADP to proteins or other small molecules. Transfer of ADP-ribose to water (i.e., hydrolysis) is catalyzed by the NADASES. The mono(ADP-ribose)transferases transfer a single ADP-ribose. POLY(ADP-RIBOSE) POLYMERASES transfer multiple units of ADP-ribose to protein targets, building POLY ADENOSINE DIPHOSPHATE RIBOSE in linear or branched chains. ADP-Ribosyltransferase,Mono(ADP-Ribose) Transferases,NAD(P)(+)-Arginine ADP-Ribosyltransferase,NAD+ ADP-Ribosyltransferase,ADP Ribose Transferase,ADPRT,ADPRTs,ART Transferase,ART Transferases,ARTase,ARTases,Mono ADP-ribose Transferases,Mono ADPribose Transferase,Mono ADPribose Transferases,Mono(ADP-Ribose) Transferase,Mono(ADP-Ribosyl)transferase,Mono(ADPribosyl)transferase,Mono-ADP-Ribosyltransferase,MonoADPribosyltransferase,NAD ADP-Ribosyltransferase,NAD(+)-L-arginine ADP-D-ribosyltransferase,NAD-Agmatine ADP-Ribosyltransferase,NAD-Arginine ADP-Ribosyltransferase,NADP-ADPRTase,NADP-Arginine ADP-Ribosyltransferase,ADP Ribosyltransferase,ADP-Ribosyltransferase, NAD,ADP-Ribosyltransferase, NAD+,ADP-Ribosyltransferase, NAD-Agmatine,ADP-Ribosyltransferase, NAD-Arginine,ADP-Ribosyltransferase, NADP-Arginine,ADP-ribose Transferases, Mono,ADPribose Transferase, Mono,ADPribose Transferases, Mono,Mono ADP Ribosyltransferase,Mono ADP ribose Transferases,NAD ADP Ribosyltransferase,NAD Agmatine ADP Ribosyltransferase,NAD Arginine ADP Ribosyltransferase,NAD+ ADP Ribosyltransferase,NADP ADPRTase,NADP Arginine ADP Ribosyltransferase,Ribose Transferase, ADP,Ribose Transferases, ADP,Transferase, ADP Ribose,Transferase, ART,Transferase, Mono ADPribose,Transferases, ADP Ribose,Transferases, ART,Transferases, Mono ADP-ribose,Transferases, Mono ADPribose

Related Publications

R E West, and J Moss
January 2018, Methods in molecular biology (Clifton, N.J.),
R E West, and J Moss
January 1984, Methods in enzymology,
R E West, and J Moss
January 1997, Advances in experimental medicine and biology,
R E West, and J Moss
June 1996, Journal of immunology (Baltimore, Md. : 1950),
R E West, and J Moss
May 1983, The Journal of biological chemistry,
R E West, and J Moss
January 2015, Current protein & peptide science,
R E West, and J Moss
January 1998, Journal of leukocyte biology,
R E West, and J Moss
January 1983, Princess Takamatsu symposia,
Copied contents to your clipboard!