Amino acid-specific ADP-ribosylation. 1983

J Moss, and D A Yost, and S J Stanley

[adenine-U-14C]ADP-ribose-agmatine and [adenine-U-14C ))ADP-ribose-histone were synthesized by an NAD:arginine ADP-ribosyltransferase from [14C]NAD and agmatine and histone, respectively. The pseudo-first order rate constants for breakdown of the two components either in 0.4 N NaOH or in 0.4 M neutral hydroxylamine were identical. Hydroxylamine treatment of [14C]ADP-ribose-agmatine or [32P]ADP-ribose-histone yielded a single radioactive product which was separated by high pressure liquid chromatography and identified as ADP-ribose-hydroxamate by the formation of a ferric chloride complex. Hydrolysis of ADP-ribose-hydroxamate with snake venom phosphodiesterase resulted in the formation of 5'-AMP, consistent with the presence of a pyrophosphate bond. Incubation of ADP-ribose-[14C]agmatine, synthesized by the ADP-ribosyltransferase from NAD and [14C]agmatine, with 0.4 M neutral hydroxylamine resulted in the release of [14C]agmatine rather than phosphoribosyl[14C]agmatine. In addition, neither NAD nor ADP-ribose reacts with hydroxylamine; i.e. there was no evidence of nucleophilic attack by hydroxylamine at the pyrophosphate bond. The ADP-ribosyl-protein linkage formed by the NAD:arginine ADP-ribosyltransferase is considerably more stable to hydroxylamine than is the ADP-ribose-glutamate bond. The presence of ADP-ribose-arginine and ADP-ribose-glutamate synthesized by the ADP-ribosyltransferase and poly(ADP-ribose) synthetase, respectively, may be the chemical basis for the "hydroxylamine-stable" and "hydroxylamine-labile" bonds described by Hilz (Hilz, H. (1981) Hoppe-Seyler's Z. Physiol. Chem. 362, 1415-1425).

UI MeSH Term Description Entries
D009702 Nucleoside Diphosphate Sugars Diphosphate Sugars, Nucleoside,Sugars, Nucleoside Diphosphate
D010430 Pentosyltransferases Enzymes of the transferase class that catalyze the transfer of a pentose group from one compound to another.
D010727 Phosphoric Diester Hydrolases A class of enzymes that catalyze the hydrolysis of one of the two ester bonds in a phosphodiester compound. EC 3.1.4. Phosphodiesterase,Phosphodiesterases,Hydrolases, Phosphoric Diester
D011065 Poly(ADP-ribose) Polymerases Enzymes that catalyze the transfer of multiple ADP-RIBOSE groups from nicotinamide-adenine dinucleotide (NAD) onto protein targets, thus building up a linear or branched homopolymer of repeating ADP-ribose units i.e., POLY ADENOSINE DIPHOSPHATE RIBOSE. ADP-Ribosyltransferase (Polymerizing),Poly ADP Ribose Polymerase,Poly(ADP-Ribose) Synthase,Poly(ADP-ribose) Polymerase,PARP Polymerase,Poly ADP Ribose Transferase,Poly ADP-Ribose Synthase,Poly(ADP-Ribose) Transferase,Poly(ADPR) Polymerase,Poly(ADPribose) Polymerase,Poly ADP Ribose Synthase,Polymerase, PARP,Synthase, Poly ADP-Ribose
D011756 Diphosphates Inorganic salts of phosphoric acid that contain two phosphate groups. Diphosphate,Pyrophosphate Analog,Pyrophosphates,Pyrophosphate Analogs,Analog, Pyrophosphate
D004355 Drug Stability The chemical and physical integrity of a pharmaceutical product. Drug Shelf Life,Drugs Shelf Lives,Shelf Life, Drugs,Drug Stabilities,Drugs Shelf Life,Drugs Shelf Live,Life, Drugs Shelf,Shelf Life, Drug,Shelf Live, Drugs,Shelf Lives, Drugs
D006207 Half-Life The time it takes for a substance (drug, radioactive nuclide, or other) to lose half of its pharmacologic, physiologic, or radiologic activity. Halflife,Half Life,Half-Lifes,Halflifes
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D006878 Hydroxides Inorganic compounds that contain the OH- group.
D006898 Hydroxylamines Organic compounds that contain the (-NH2OH) radical.

Related Publications

J Moss, and D A Yost, and S J Stanley
August 1981, The Journal of biological chemistry,
J Moss, and D A Yost, and S J Stanley
May 1994, European journal of biochemistry,
J Moss, and D A Yost, and S J Stanley
January 2018, Methods in molecular biology (Clifton, N.J.),
J Moss, and D A Yost, and S J Stanley
January 2023, Methods in molecular biology (Clifton, N.J.),
J Moss, and D A Yost, and S J Stanley
July 1984, Proceedings of the National Academy of Sciences of the United States of America,
J Moss, and D A Yost, and S J Stanley
November 2016, eLife,
J Moss, and D A Yost, and S J Stanley
January 1975, Journal of biochemistry,
J Moss, and D A Yost, and S J Stanley
January 1985, Annual review of biochemistry,
Copied contents to your clipboard!