Effect of pH on the kinetics of Na+-dependent phosphate transport in rat renal brush-border membranes. 1987

R J Bindels, and L A van den Broek, and C H van Os

The kinetics of Na+-dependent phosphate uptake in rat renal brush-border membrane vesicles were studied under zero-trans conditions at 37 degrees C and the effect of pH on the kinetic parameters was determined. When the pH was lowered it turned out to be increasingly difficult to estimate initial rates of phosphate uptake due to an increase in aspecific binding of phosphate to the brush border membrane. When EDTA or beta-glycerophosphate was added to the uptake medium this aspecific binding was markedly reduced. At pH 6.8, initial rates of phosphate uptake were measured between 0.01 and 3.0 mM phosphate in the presence of 100 mM Na+. Kinetic analysis resulted in a non-linear Eadie-Hofstee plot, compatible with two modes of transport: one major low-affinity system (Km approximately equal to 1.3 mM), high-capacity system (Vmax approximately equal to 1.1 nmol/s per mg protein) and one minor high-affinity (Km approximately equal to 0.03 mM), low-capacity system (Vmax approximately equal to 0.04 nmol/s per mg protein). Na+-dependent phosphate uptake studied far from initial rate conditions i.e. at 15 s, frequently observed in the literature, led to a dramatic decrease in the Vmax of the low-affinity system. When both the extra- and intravesicular pH were increased from 6.2 to 8.5, the Km value of the low-affinity system increased, but when divalent phosphate is considered to be the sole substrate for the low-affinity system then the Km value is no longer pH dependent. In contrast, the Km value of the high-affinity system was not influenced by pH but the Vmax decreased dramatically when the pH is lowered from 8.5 to 6.2. These results suggest that the low-affinity, high-capacity system transports divalent divalent phosphate only while the high-affinity, low-capacity system may transport univalent as well as divalent phosphate. Raising medium sodium concentration from 100 to 250 mM increased Na+-dependent phosphate uptake significantly but the pH dependence of the phosphate transport was not influenced. This observation makes it rather unlikely that pH changes only affect the Na+ site of the Na+-dependent phosphate transport system.

UI MeSH Term Description Entries
D007687 Kidney Tubules, Proximal The renal tubule portion that extends from the BOWMAN CAPSULE in the KIDNEY CORTEX into the KIDNEY MEDULLA. The proximal tubule consists of a convoluted proximal segment in the cortex, and a distal straight segment descending into the medulla where it forms the U-shaped LOOP OF HENLE. Proximal Kidney Tubule,Proximal Renal Tubule,Kidney Tubule, Proximal,Proximal Kidney Tubules,Proximal Renal Tubules,Renal Tubule, Proximal,Renal Tubules, Proximal,Tubule, Proximal Kidney,Tubule, Proximal Renal,Tubules, Proximal Kidney,Tubules, Proximal Renal
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008871 Microvilli Minute projections of cell membranes which greatly increase the surface area of the cell. Brush Border,Striated Border,Border, Brush,Border, Striated,Borders, Brush,Borders, Striated,Brush Borders,Microvillus,Striated Borders
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D011921 Rats, Inbred WKY A strain of Rattus norvegicus used as a normotensive control for the spontaneous hypertensive rats (SHR). Rats, Wistar Kyoto,Wistar Kyoto Rat,Rats, WKY,Inbred WKY Rat,Inbred WKY Rats,Kyoto Rat, Wistar,Rat, Inbred WKY,Rat, WKY,Rat, Wistar Kyoto,WKY Rat,WKY Rat, Inbred,WKY Rats,WKY Rats, Inbred,Wistar Kyoto Rats
D004492 Edetic Acid A chelating agent that sequesters a variety of polyvalent cations such as CALCIUM. It is used in pharmaceutical manufacturing and as a food additive. EDTA,Edathamil,Edetates,Ethylenediaminetetraacetic Acid,Tetracemate,Calcium Disodium Edetate,Calcium Disodium Versenate,Calcium Tetacine,Chelaton 3,Chromium EDTA,Copper EDTA,Coprin,Dicobalt EDTA,Disodium Calcitetracemate,Disodium EDTA,Disodium Ethylene Dinitrilotetraacetate,Distannous EDTA,Edetate Disodium Calcium,Edetic Acid, Calcium Salt,Edetic Acid, Calcium, Sodium Salt,Edetic Acid, Chromium Salt,Edetic Acid, Dipotassium Salt,Edetic Acid, Disodium Salt,Edetic Acid, Disodium Salt, Dihydrate,Edetic Acid, Disodium, Magnesium Salt,Edetic Acid, Disodium, Monopotassium Salt,Edetic Acid, Magnesium Salt,Edetic Acid, Monopotassium Salt,Edetic Acid, Monosodium Salt,Edetic Acid, Potassium Salt,Edetic Acid, Sodium Salt,Ethylene Dinitrilotetraacetate,Ethylenedinitrilotetraacetic Acid,Gallium EDTA,Magnesium Disodium EDTA,N,N'-1,2-Ethanediylbis(N-(carboxymethyl)glycine),Potassium EDTA,Stannous EDTA,Versenate,Versene,Acid, Edetic,Acid, Ethylenediaminetetraacetic,Acid, Ethylenedinitrilotetraacetic,Calcitetracemate, Disodium,Dinitrilotetraacetate, Disodium Ethylene,Dinitrilotetraacetate, Ethylene,Disodium Versenate, Calcium,EDTA, Chromium,EDTA, Copper,EDTA, Dicobalt,EDTA, Disodium,EDTA, Distannous,EDTA, Gallium,EDTA, Magnesium Disodium,EDTA, Potassium,EDTA, Stannous,Edetate, Calcium Disodium,Ethylene Dinitrilotetraacetate, Disodium,Tetacine, Calcium,Versenate, Calcium Disodium
D005994 Glycerophosphates Any salt or ester of glycerophosphoric acid. Glycerolphosphate,Glycerophosphate,Calcium Glycerophosphate,Glycerolphosphates,Glycerophosphate, Calcium
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R J Bindels, and L A van den Broek, and C H van Os
May 1985, The American journal of physiology,
R J Bindels, and L A van den Broek, and C H van Os
October 2005, Biochimica et biophysica acta,
R J Bindels, and L A van den Broek, and C H van Os
January 1984, Advances in experimental medicine and biology,
R J Bindels, and L A van den Broek, and C H van Os
August 1975, The Journal of biological chemistry,
R J Bindels, and L A van den Broek, and C H van Os
April 1987, The American journal of physiology,
R J Bindels, and L A van den Broek, and C H van Os
January 1985, Nihon Jinzo Gakkai shi,
R J Bindels, and L A van den Broek, and C H van Os
May 1981, Pflugers Archiv : European journal of physiology,
R J Bindels, and L A van den Broek, and C H van Os
June 1988, The Biochemical journal,
R J Bindels, and L A van den Broek, and C H van Os
June 1997, European journal of pharmacology,
R J Bindels, and L A van den Broek, and C H van Os
January 1986, Advances in experimental medicine and biology,
Copied contents to your clipboard!