Rat liver NAD(P)H: quinone reductase nucleotide sequence analysis of a quinone reductase cDNA clone and prediction of the amino acid sequence of the corresponding protein. 1987

R M Bayney, and J A Rodkey, and C D Bennett, and A Y Lu, and C B Pickett

We have determined the nucleotide sequence of a cDNA clone, pDTD55, complementary to rat liver quinone reductase mRNA (Williams, J.B., Lu, A.Y.H., Cameron, R.G., and Pickett, C.B. (1986) J. Biol. Chem. 261, 5524-5528). The cDNA clone contains an open reading frame of 759 nucleotides encoding a polypeptide comprised of 253 amino acids with a Mr = 28,564. To verify the predicted amino acid sequence of quinone reductase, we have been able to align the amino acid sequences of a cyanogen bromide digest of the purified enzyme to the sequence deduced from the cDNA clone. A comparison of the quinone reductase sequence with other known flavoenzymes did not reveal a significant degree of amino acid sequence homology. These data suggest that the quinone reductase gene has evolved independently from genes encoding other flavoenzymes.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D011808 Quinone Reductases NAD(P)H:(quinone acceptor) oxidoreductases. A family that includes three enzymes which are distinguished by their sensitivity to various inhibitors. EC 1.6.99.2 (NAD(P)H DEHYDROGENASE (QUINONE);) is a flavoprotein which reduces various quinones in the presence of NADH or NADPH and is inhibited by dicoumarol. EC 1.6.99.5 (NADH dehydrogenase (quinone)) requires NADH, is inhibited by AMP and 2,4-dinitrophenol but not by dicoumarol or folic acid derivatives. EC 1.6.99.6 (NADPH dehydrogenase (quinone)) requires NADPH and is inhibited by dicoumarol and folic acid derivatives but not by 2,4-dinitrophenol. Menaquinone Reductases,Reductases, Menaquinone,Reductases, Quinone
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003488 Cyanogen Bromide Cyanogen bromide (CNBr). A compound used in molecular biology to digest some proteins and as a coupling reagent for phosphoroamidate or pyrophosphate internucleotide bonds in DNA duplexes. Bromide, Cyanogen
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

R M Bayney, and J A Rodkey, and C D Bennett, and A Y Lu, and C B Pickett
October 1985, The Journal of biological chemistry,
R M Bayney, and J A Rodkey, and C D Bennett, and A Y Lu, and C B Pickett
November 1988, The Journal of biological chemistry,
R M Bayney, and J A Rodkey, and C D Bennett, and A Y Lu, and C B Pickett
April 1988, European journal of biochemistry,
R M Bayney, and J A Rodkey, and C D Bennett, and A Y Lu, and C B Pickett
January 1987, Doklady Akademii nauk SSSR,
R M Bayney, and J A Rodkey, and C D Bennett, and A Y Lu, and C B Pickett
January 1986, Proceedings of the National Academy of Sciences of the United States of America,
R M Bayney, and J A Rodkey, and C D Bennett, and A Y Lu, and C B Pickett
May 1987, The Journal of biological chemistry,
R M Bayney, and J A Rodkey, and C D Bennett, and A Y Lu, and C B Pickett
May 1984, The Journal of biological chemistry,
Copied contents to your clipboard!