The nucleotide sequence of a rat liver glutathione S-transferase subunit cDNA clone. 1984

H C Lai, and N Li, and M J Weiss, and C C Reddy, and C P Tu

We have determined the nucleotide sequence of a cloned cDNA derived from liver poly(A) RNA of pentobarbital-treated rats encoding a glutathione S-transferase subunit. This cDNA clone pGTR261 contains one open reading frame of 222 amino acids, a complete 3' noncoding region, and 63 nucleotides in the 5' noncoding region. The cloned DNA hybridizes to rat poly(A) RNA in a tissue-specific fashion, with strong signals to liver and kidney poly(A) RNA(s) of approximately 1100 and approximately 1400 nucleotides in size but little or no hybridization to poly(A) RNAs from heart, lung, seminal vesicles, spleen, or testis under stringent conditions. Our sequence covers the cDNA sequence of pGST94 which contains a partial coding sequence for a liver glutathione S-transferase subunit of Ya size. Comparison of sequences with our earlier clone pGTR112 suggests that there are at least two mRNA species coding for two different subunits of the Ya (Mr = 25,600) subunit family with very limited amino acid substitutions mainly of conserved polarity. The divergent 3' noncoding sequences should be useful molecular probes in differentiating these two different but otherwise very similar subunits in induction and genomic structure analyses. Our results suggest that tissue-specific expression of the glutathione S-transferase subunits represented by the sequences of pGTR261 and pGTR112 may occur at or prior to the level of RNA processing.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D011061 Poly A A group of adenine ribonucleotides in which the phosphate residues of each adenine ribonucleotide act as bridges in forming diester linkages between the ribose moieties. Adenine Polynucleotides,Polyadenylic Acids,Poly(rA),Polynucleotides, Adenine
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003062 Codon A set of three nucleotides in a protein coding sequence that specifies individual amino acids or a termination signal (CODON, TERMINATOR). Most codons are universal, but some organisms do not produce the transfer RNAs (RNA, TRANSFER) complementary to all codons. These codons are referred to as unassigned codons (CODONS, NONSENSE). Codon, Sense,Sense Codon,Codons,Codons, Sense,Sense Codons
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

H C Lai, and N Li, and M J Weiss, and C C Reddy, and C P Tu
August 1987, Biochemical Society transactions,
H C Lai, and N Li, and M J Weiss, and C C Reddy, and C P Tu
June 1991, Biochimica et biophysica acta,
H C Lai, and N Li, and M J Weiss, and C C Reddy, and C P Tu
September 1985, Nucleic acids research,
H C Lai, and N Li, and M J Weiss, and C C Reddy, and C P Tu
August 1986, Nucleic acids research,
H C Lai, and N Li, and M J Weiss, and C C Reddy, and C P Tu
March 1993, The American journal of tropical medicine and hygiene,
H C Lai, and N Li, and M J Weiss, and C C Reddy, and C P Tu
October 1985, The Journal of biological chemistry,
H C Lai, and N Li, and M J Weiss, and C C Reddy, and C P Tu
March 1989, Archives of biochemistry and biophysics,
H C Lai, and N Li, and M J Weiss, and C C Reddy, and C P Tu
November 1991, Biochimica et biophysica acta,
H C Lai, and N Li, and M J Weiss, and C C Reddy, and C P Tu
September 1982, Nucleic acids research,
H C Lai, and N Li, and M J Weiss, and C C Reddy, and C P Tu
January 1989, Immunogenetics,
Copied contents to your clipboard!