Heat shock loci 93D of Drosophila melanogaster and 48B of Drosophila hydei exhibit a common structural and transcriptional pattern. 1987

R P Ryseck, and U Walldorf, and T Hoffmann, and B Hovemann

A comparison of gene structure, sequence, and transcription pattern of heat shock loci 93D of Drosophila melanogaster and 48B of Drosophila hydei has been performed. Both heat shock loci consist of an unique region that is flanked by an internally repetitive element. Different members of these elements are highly conserved, repeat unit length, however, and primary sequence diverged totally. Whereas the overall gene structure in both species is substantially related, sequence conservation is only observed at very few sites in the unique region. These represent primarily sequences that are identified as regulatory elements for faithful transcription and processing. The number and size of transcripts obtained from heat shock locus 48B in third instar larvae closely resembles the pattern of heat shock locus 93D. Thus their quite alike structure and transcription pattern suggest strongly a conserved hitherto unknown function.

UI MeSH Term Description Entries
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D004330 Drosophila A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology. Fruit Fly, Drosophila,Drosophila Fruit Flies,Drosophila Fruit Fly,Drosophilas,Flies, Drosophila Fruit,Fly, Drosophila Fruit,Fruit Flies, Drosophila
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D006360 Heat-Shock Proteins Proteins which are synthesized in eukaryotic organisms and bacteria in response to hyperthermia and other environmental stresses. They increase thermal tolerance and perform functions essential to cell survival under these conditions. Stress Protein,Stress Proteins,Heat-Shock Protein,Heat Shock Protein,Heat Shock Proteins,Protein, Stress
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012689 Sequence Homology, Nucleic Acid The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function. Base Sequence Homology,Homologous Sequences, Nucleic Acid,Homologs, Nucleic Acid Sequence,Homology, Base Sequence,Homology, Nucleic Acid Sequence,Nucleic Acid Sequence Homologs,Nucleic Acid Sequence Homology,Sequence Homology, Base,Base Sequence Homologies,Homologies, Base Sequence,Sequence Homologies, Base
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

R P Ryseck, and U Walldorf, and T Hoffmann, and B Hovemann
January 1982, Chromosoma,
R P Ryseck, and U Walldorf, and T Hoffmann, and B Hovemann
January 1984, Molecular & general genetics : MGG,
R P Ryseck, and U Walldorf, and T Hoffmann, and B Hovemann
January 1982, Chromosoma,
R P Ryseck, and U Walldorf, and T Hoffmann, and B Hovemann
July 1983, European journal of cell biology,
R P Ryseck, and U Walldorf, and T Hoffmann, and B Hovemann
January 1989, Genome,
R P Ryseck, and U Walldorf, and T Hoffmann, and B Hovemann
January 1980, Chromosoma,
R P Ryseck, and U Walldorf, and T Hoffmann, and B Hovemann
February 1984, Genetics,
R P Ryseck, and U Walldorf, and T Hoffmann, and B Hovemann
November 1985, Molecular and cellular biology,
R P Ryseck, and U Walldorf, and T Hoffmann, and B Hovemann
March 1986, Proceedings of the National Academy of Sciences of the United States of America,
R P Ryseck, and U Walldorf, and T Hoffmann, and B Hovemann
August 1990, Chromosoma,
Copied contents to your clipboard!