New perspectives for reassessing fosfomycin: applicability in current clinical practice. 2019

F J Candel, and M Matesanz David, and J Barberán
Francisco Javier Candel González. Enfermedades Infecciosas. Microbiología Clínica. Instituto de Investigación sanitaria San Carlos (IdIISC). Instituto de Medicina de Laboratorio (IML). Hospital Clínico San Carlos. Universidad Complutense de Madrid, Spain. fj.candel@gmail.com.

Fosfomycin is a bactericidal antibiotic that interferes with cell wall synthesis. The drug therefore has a broad spectrum of activity against a wide range of Gram-positive and Gram-negative bacteria. Both the European Medicines Agency (EMA) and the US Food and Drug Administration (FDA) have started review processes of the accumulated information on the use of fosfomycin and on information from new clinical trials. The intent is to establish usage terms in Europe and to authorize the sale of fosfomycin in the US. This monograph reviews the most current aspects of the compound. From the microbiological point of view, fosfomycin's single mechanism of action can provide a synergistic effect to other classes of antibiotics, including β-lactams, aminoglycosides, lipopeptides and fluoroquinolones. The resistance mechanisms include the reduced intracellular transport of the antibiotic, the change in target and the direct inactivation of the antibiotic by metalloenzymes and kinases; however, the clinical impact of some of these mechanisms has not yet been elucidated. The lack of agreement in determining the sensitivity cutoffs between the Clinical and Laboratory Standards Institute (CLSI) (≤64 mg/L) and the European Committee on Antimicrobial Susceptibility Testing (EUCAST) (≤32 mg/L), the fact that a number of microorganisms require a higher MIC (Klebsiella spp., Enterobacter spp., Serratia spp., Pseudomonas aeruginosa) and the drug's different effective concentrations against Gram-positive and Gram-negative bacteria have resulted in recommended dosages for treating multiresistant microorganism infections that vary between 8 and 12 g/day for Gram-positive bacteria and 16 and 24 g/day for Gram-negative bacteria. Fosfomycin has 3 presentations (intravenous with disodium salt, oral with calcium salt and combined with tromethamine),has good distribution in tissues and abscesses and is well tolerated. The pharmacodynamic ratio of dosage production for fosfomycin is AUC/MIC. However, the pharmacokinetics/pharmacodynamic ratio could be optimized in daily practice based on the pathogen, the patient's clinical profile or the infection model. Fosfomycin is the treatment of choice for cystitis in immunocompetent patients, patients with transplants, pregnant women and in pediatric settings. The drug is especially useful due to its microbiological activity and oral posology in cystitis caused by ESBL bacteria. Administer intravenously at high doses and combined with other antimicrobial agents. Fosfomycin has been useful in treating infections by multiresistant Gram-negative bacteria, such as Enterobacteriaceae, carbapenemase carriers and P. aeruginosa, extensively resistant or panresistant in urinary infections and in skin and soft tissue. Fosfomycin has also been shown active in combination with daptomycin or imipenem in osteoarticular infections by methicillin-resistant Staphylococcus aureus. Fosfomycin is an old antibiotic that still has much to reveal.

UI MeSH Term Description Entries
D005578 Fosfomycin An antibiotic produced by Streptomyces fradiae. Phosphonomycin,Fosfomycin Trometamol Salt,Fosfomycin Tromethamine,Monuril,Phosphomycin,Tromethamine, Fosfomycin
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D001424 Bacterial Infections Infections by bacteria, general or unspecified. Bacterial Disease,Bacterial Infection,Infection, Bacterial,Infections, Bacterial,Bacterial Diseases
D024881 Drug Resistance, Bacterial The ability of bacteria to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance, Bacterial,Antibacterial Drug Resistance

Related Publications

F J Candel, and M Matesanz David, and J Barberán
April 1994, Medsurg nursing : official journal of the Academy of Medical-Surgical Nurses,
F J Candel, and M Matesanz David, and J Barberán
December 2021, Urologiia (Moscow, Russia : 1999),
F J Candel, and M Matesanz David, and J Barberán
June 2019, Arquivos brasileiros de cardiologia,
F J Candel, and M Matesanz David, and J Barberán
February 2014, Regulatory toxicology and pharmacology : RTP,
F J Candel, and M Matesanz David, and J Barberán
October 2017, Antibiotics (Basel, Switzerland),
F J Candel, and M Matesanz David, and J Barberán
May 1999, Haematologica,
F J Candel, and M Matesanz David, and J Barberán
January 1997, Bulletin of the Menninger Clinic,
F J Candel, and M Matesanz David, and J Barberán
May 1984, Washington report on medicine & health,
F J Candel, and M Matesanz David, and J Barberán
June 2019, The Pediatric infectious disease journal,
Copied contents to your clipboard!